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Abstract

Decisions in which multiple objectives must be optimized simultaneously occur fre-

quently in government, military, and industrial settings. One method a decision maker

(e.g., a design engineer) may use to assist in multiple response optimization situations

is the application of a desirability function. The decision maker specifies the desirabil-

ity function parameters so as to express his or her own preferences with respect to the

objectives under consideration. An informed specification of the parameters is essen-

tial so that the desirability function accurately describes the decision maker’s value

trade-offs and risk preference. Misapplication of the desirability function may result

in the selection of an optimal policy that is inconsistent with the stated preferences.

This thesis examines the desirability function from a decision analysis perspective.

In particular, utility transversality provides the basis for an analysis of the implicit

value trade-off and risk attitude assumptions attendant to the desirability function.

A limitation of the desirability function is its failure to explicitly account for

response variability. A robust solution accounts for not only the expected response,

but the variance as well. Assessing a utility function over desirability as a means to

describe the decision maker’s risk preference produces a robust operating solution that

is consistent with those preferences. This thesis examines robustness as it applies to

the desirability function, using a decision analysis perspective. In particular, a robust

manufacturing solution is identified for a wire-bonding process, seen often in the

quality and reliability engineering design literature. An exponential utility function

over desirability is applied to regression equations developed from a Box-Behnken

design. Monte Carlo simulation enables specification of the robust solution.
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Using decision analysis methods, this methodology is applied to a practical prob-

lem currently facing the Air Force Research Laboratory (AFRL). Contributing to

AFRL’s Robust Decision Making Strategic Technology Team program, this thesis

examines robustness in the context of national policy-making in country stability sit-

uation. Different levels of diplomatic, informational, military, and economic (DIME)

instruments of national policy are investigated to examine how they affect the po-

litical, military, economic, social, infrastructure, and information (PMESII) systems

of a nation. AFRL’s National Operational Environment Model (NOEM) serves as

the basis for the analysis of a scenario involving the Democratic Republic of Congo.

A D-optimal design of experiments enables identification of a robust national policy.

Employment of a multiattribute utility function that satisfies the axioms of expected

utility theory ensures that the policy is consistent with the decision maker’s stated

preferences.
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A DECISION ANALYSIS PERSPECTIVE ON MULTIPLE RESPONSE ROBUST

OPTIMIZATION

I. Introduction

Often, a decision must be made that optimizes a single objective, such as a com-

pany desiring to maximize profit. Other times, decisions must be made to simulta-

neously optimize a set of multiple objectives. Such decisions can occur within any

organization.

Examples of multiple objective decisions in government include selecting the proper

regional road network that balances the environmental, social and economic impacts

of the region’s municipalities within a fixed budget [7]. Another example is selecting

the best location for a new airport. The competing objectives in this case are minimiz-

ing construction costs, while also minimizing transit time for travelers, maximizing

safety and minimizing noise pollution [21].

Examples in military settings include designing a military aircraft where maximum

range and maximum speed are two competing objectives with maximum payload

capacity [25]. Another example is developing a stabilization, security, transition,

and reconstruction operation (SSTRO) where the nation’s positive political, military,

economic, and social indicators are desired [5].

Examples in industry include gum extraction from plant seeds where maximum

extraction yield, viscosity, hue, and emulsion stability needs to be balanced with

minimum protein content [28]. Another example is machining parts where the balance

of metal removal rate and surface roughness needs to be optimized [35]. One’s personal

life also holds examples of such decisions such as buying a truck where one desires

maximum power with maximum fuel economy.

1



Often, objectives conflict so that selecting an alternative resulting in the simul-

taneous optimum for each objective is infeasible. Consider the truck buyer desiring

increased power in a new truck with increased fuel economy. Nearly always, the truck

with the most power will not also have the highest fuel economy. This “ideal” truck

does not exist. In these cases, a compromise solution to balance these competing ob-

jectives must be found. This correct balance is based in large part on the application

and objectives in question as well as the preferences of the decision makers in charge.

Although many organizations have a group of people making these types of decisions,

this thesis assumes a single decision maker with no loss of generality. Several areas

of study exist to assist the decision maker with such decisions.

Decision analysis is a combination of mathematical and logical methods used to

assist a decision maker in choosing the appropriate decision in an uncertain world.

Using the axioms of utility theory, mathematical models can be created that best

describe the preferences of the decision maker [18]. These preferences include the

decision maker’s trade-offs between different value measures and the decision maker’s

probabilistic preference between different outcomes [18]. Decision analysis can apply

to both single attribute situations as well as multiple attribute situations.

Some decision analysis practitioners prefer to treat multiple attribute applications

in a way that examines each attribute separately in terms of the decision maker’s

preferences for that attribute. Marginal utility functions are developed for each at-

tribute; these separate functions are then combined into a single multiattribute utility

function based on certain assumptions made about preferential independence, utility

independence and additive independence amongst the attributes [23].

Other decision analysis practitioners prefer to formulate a value function directly

considering the deterministic trade-offs between the multiple attributes. A utility

function is then assessed for this value measure [1]. Matheson and Abbas propose

2



the idea of utility transversality in a utility function assigned over a value function

[31]. This concept relates the risk aversion functions of the individual attributes to

the value trade-off functions between these attributes. Abbas also relates a decision

maker’s risk aversion over value to the decision maker’s multiattribute risk aversion

[2].

Often, a decision maker is interested in adjusting a set of controllable inputs to

optimize a set of outputs. Response Surface Methodology (RSM) is a set of statistical

and mathematical methods used to develop or improve processes [32]. Used widely in

industry, most RSM applications optimize a response variable which is a function of

one or more input variables. These functions can be known exactly such as through

a chemical or engineering process. Other times, the underlying function is not known

and is estimated using various statistical methods [32].

In many cases, more than one response variable is important to a process. One

example is a machining process with machining parameters as input variables and two

response variables: removal rate and surface roughness. The optimum decision might

be the proper combination of machining parameters that simultaneously maximizes

removal rate and minimizes surface roughness [35].

Numerous multiple response optimization models exist in current RSM literature

[15, 9, 13, 24, 45]. Harrington introduces one such model [15]. Harrington’s desirabil-

ity function transforms each response to an individual desirability level between zero

and one. The optimum strategy is then the one which produces the highest geometric

mean of the individual desirability levels [15].

Derringer and Suich modified the form of the individual desirability function to

be more flexible [13]. They change the individual desirability function to provide the

decision maker more control over how quickly desirability moves from zero to one as

the response moves from its worst value to its target value.

3



In employing the desirability function, care must be taken by the analyst to

choose parameters consistent with the decision maker’s own preferences. The de-

sirability function exhibits implicit and explicit assumptions regarding risk attitude,

value trade-offs, and attribute independence. Potential problems may result from

using a multiple response optimization model without fully understanding these as-

sumptions. Kros and Mastrangelo introduce the idea of applying utility theory to

examine the assumptions and preferences underlying desirability functions [29]. They

attempt to compare and contrast assumptions regarding risk preferences, trade-offs,

and relationships between the multiple attributes inherent in Derringer and Suich’s

desirability function [29].

This thesis examines the desirability function from a decision analysis perspective.

This analysis provides knowledge about how best to employ the desirability function

in a manner consistent with the decision maker’s value trade-offs and risk attitude.

In the current climate of budgetary constraints across industrial and governmental

organizations, proper analysis of a decision situation is vital to maximizing the limited

resources available. When confronted with a situation where multiple objectives need

to be considered, the analyst needs to understand the assumptions inherent to the

model chosen so that it is consistent with the decision maker’s preferences and the

proper solution for the organization can be found.

The rest of this thesis is organized as follows. Chapter 2 presents a review of rele-

vant literature. Chapter 3 develops the methodology used to examine the desirability

function and the methodology used to find a robust optimum solution from a decision

analysis perspective. Chapter 4 presents the analysis of a robust optimization solution

in a wire bonding process experiment in the semiconductor industry using various as-

sumptions about risk attitude and value trade-offs. Chapter 5 presents the analysis of

4



a robust optimization solution in a nation-building (i.e., SSTRO) example. Chapter

6 offers significant findings, recommendations, and suggestions for future work.

5



II. Review of Related Literature

2.1 Organization

This chapter reviews the related literature applicable to the thesis. Section 2.2

gives an overview of decision analysis including risk preferences and modeling uncer-

tainty in cases of single attributes and multiple attributes.

Section 2.3 discusses Response Surface Methodology and how the desirability func-

tion is used to find an optimum setting in a multiple response situation. The idea of

a robust optimum point in a noisy environment is also discussed.

Section 2.4 discusses stability operations and their place in the United States

security plan are then discussed. The Air Force Research Lab models such operations

with their National Operational Environment Model.

2.2 Decision Analysis

In a system of unknowns such as a business venture where future profits and

product demand growth can only be estimated, decision analysis is an excellent tool

to balance the factors, both certain and uncertain, that apply to a given decision

situation. Ronald Howard describes decision analysis as a cycle encompassing deter-

ministic, probabilistic, and informational phases to settle on a logically best decision

[18]. The deterministic phase establishes certain relationships between the variables

within the problem. The probabilistic phase introduces the uncertainties and risk

preference of the decision maker. The informational phase determines the value of

gathering more information. If more information is to be gathered, the cycle is re-

peated until no new information is deemed necessary by the decision maker [18].

The uncertainty involved in a business investment venture is not something easily

measured. Howard describes two types of probabilities: objective and subjective. An
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objective probability is one that is measured after several instances of the uncertain

event occur. For example, finding after 1,000 coin flips that the coin came up heads

approximately 500 times could lead one to objectively assign a 50% probability to that

coin coming up heads on the next coin flip. Alternatively, a subjective probability is

one which is assigned based on individual knowledge about the nature of the uncertain

event. For example, assigning a 50% probability to a coin one has never seen flipped

before based on the fact the coin appears to be ’fair’ is subjective [18]. In most cases,

a particular business venture cannot be tried several times to see how likely it is to

be successful. Only a subjective probability can be assigned to its success based on

analytical knowledge of the nature of this and similar ventures.

2.2.1 Utility Theory.

Howard describes utility theory as encompassing five axioms concerning the idea

of lotteries [18]. A lottery is a set of outcomes in which exactly one occurs. The

first axiom requires transitivity in preference. If three alternatives, A, B, and C, are

available and if an individual prefers A to B and prefers B to C, this individual must

prefer A to C.

The second axiom calls for a probabilistic preference. Consider one who prefers A

to B to C. Then, a preference probability, p, must exist where this person is indifferent

to accepting B for certain or accepting a lottery which produces A with probability

p or produces C with probability (1 − p). When a particular value of p is found, B

becomes the certain equivalent (CE) of the lottery between A and C. Figure 1 shows

how this lottery and its CE are usually depicted in decision analysis literature.

The third axiom involves substitution. The CE of a lottery can be exchanged or

substituted for the lottery itself in any situation without any changes of preference

for the decision maker.
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Figure 1. B is the certain equivalent of the lottery between A and C

The fourth axiom states the acceptance of probability as the means to describe

uncertainty and also expresses indifference in the ordering of lotteries in the decision

at hand. It states that multiple levels of lotteries may be replaced by a single lottery

with the prizes and associated probabilities calculated by the laws of probability. In

essence, this axiom states that the lottery itself holds no intrinsic value to the decision

maker.

The fifth axiom states if a decision maker is faced with two lotteries, each with

outcomes of A or B, and the decision maker prefers A to B, the decision maker must

prefer the lottery that yields A with the higher probability.

2.2.2 Risk Preference.

Any practical decision opportunity which involves uncertainty must take into ac-

count the decision maker’s preference towards risk. Howard points out that few people

would be willing to give up next year’s salary for a 50% chance of doubling it versus

receiving no salary for the year although this represents a fair proposition [18]. A

person indifferent to the preceding deal is considered to be risk neutral. Howard sug-

gests that most people and organizations are risk-averse. A risk-averse individual’s

CE for a given lottery is less than the expected value of the outcome of that lottery

[18].

8



2.2.3 Utility Function.

One way to calculate a decision maker’s risk preference is to find the preference

probabilities for all feasible alternatives within the current decision space. Depending

on the situation and the number of alternatives, this can become quite cumbersome.

The utility function encodes the decision maker’s risk preference. This function as-

sociates an outcome from a lottery or other uncertain situation with a utility value.

Moreover, the decision maker’s utility of a lottery is the expected value of the u-values

of the lottery’s outcomes. From the example in Figure 1, the decision maker’s utility

for the lottery would be u1 = p ∗U(A) + (1− p) ∗U(C). If the decision maker prefers

one lottery to another, the preferred lottery’s utility will be higher than the other.

Howard also points out that although these u-values can model the decision

maker’s preferences among various alternatives or lotteries, the actual magnitude

of a utility means nothing on its own [18]. Comparing utilities cannot be used to

show how strongly one alternative is preferred to another. It can only be used for

ranking purposes [18].

Arrow and Pratt [6, 37] introduce the risk aversion function,

γ(y) = −u
′′(y)

u′(y)
. (2.1)

They show the negative ratio of a utility function’s second derivative over its first

derivative correctly measures the local risk aversion at any given point along a utility

function. This measure assumes that the utility function in question is monotonically

increasing and is twice differentiable. If γ(y) = 0, the utility function is describing

risk neutral behavior. If γ(y) > 0, it is describing risk averse behavior and if γ(y) < 0,

it is describing risk seeking behavior [37].
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2.2.4 Modeling Uncertainty.

Decision analysts employ several methods to model uncertainty. Two common

methods are using a discretized approximation of the continuous distribution or us-

ing a Monte Carlo simulation over the distribution [11]. A discretized approximation

simplifies the calculations involved with using a continuous function. When the con-

tinuous probability function is unknown, it can be estimated by using known data to

estimate the parameters of a Beta distribution.

The Beta distribution is a flexible continuous probability distribution given over

a set bounded range [3]. Equation 2.2 shows the density function.

Beta(α, β, a, b, x) =
(x− a)α−1(b− x)β−1∫ b

a
(x− a)α−1(b− x)β−1dx

(2.2)

Where a and b are the lower and upper bounds of the domain, and α and β are

the two parameters of the Beta distribution [3].

Abbas et al. [3] describe assessing the data into fractiles and then using Matlab’s

fminsearch function to estimate the two parameters (α̂, β̂) by minimizing the squared

errors from the value, x, from the inverse of its related probability p. Equation 2.3

shows the relevant expression,

min
α̂,β̂

n∑
i=1

(Xi − X̂i)
2, (2.3)

where X̂i = BetaInverse(pi, α̂, β̂, a, b), Xi is the midpoint of the i-th fractile, n is the

number of fractiles used, and α̂, β̂ > 0. The parameters a and b are chosen by the

user and pi is the probability associated with the i-th fractile [3].

Monte Carlo simulation is a method to model the uncertainty in a given system.

Assume an uncertainty can be modeled by a known distribution; a computer then
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produces a large number of random numbers from that distribution. The utilities of

the associated outcomes are then used to find the expected utility of the lottery [11].

Often multiple, correlated random variables must be modeled in the decision

model. Sklar [44] states given a joint cumulative distribution function (CDF)

F (x1, . . . , xn) with marginal CDFs F1(x1), . . . , Fn(xn), the joint CDF can be writ-

ten as a function of its marginals,

F (x1, . . . , xn) = C[F1(x1), . . . , Fn(xn)]. (2.4)

The function, C, is called a copula. If each marginal CDF, Fi, is continuous, then C

is a unique function for the given joint CDF [44].

Clemen and Reilly [10] describe how to create the joint multivariate random sam-

ple for a Monte Carlo simulation using the multivariate normal copula: 1) generate

a vector of random numbers (y1, . . . , yn) from a multivariate normal random number

generator using the desired correlation matrix, R, 2) the standard normal distribu-

tion function, Φ(yi) is calculated for each of the n variables, 3) the inverse marginal

distribution functions for each variable is then used to calculate the vector of required

variates, (F−11 [Φ(y1)], . . . , F
−1
n [Φ(yn)]) for the Monte Carlo simulation.

2.2.5 Multiattribute Utility Theory.

Two common methods for formulating multiattribute utility functions include

creating a multiattribute value function using deterministic trade-offs between the

attributes and then assessing a single attribute utility function over that value or

by assessing conditional utility functions over each of the individual attributes and

then combining these into a single multiattribute utility function by using various

independence assumptions [1].
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Some of the independence assumptions made while forming a multiattribute utility

function include preferential independence, utility independence, and additive inde-

pendence. To describe these independence assumptions, consider a multiattribute

decision situation with up to three attributes, y1, y2, y3 where each attribute falls

within the range, yi ∈ [y0i , y
∗
i ], i = 1, 2, 3. Assume the attributes can be ordered such

that (y01, y
0
2, y

0
3) is the least preferred prospect and (y∗1, y

∗
2, y
∗
3) is the most preferred

prospect.

The attributes, y1 and y2, are said to be preferentially independent of y3 if a

given deterministic prospect (y
(2)
1 , y

(2)
2 , y3) is preferred to or indifferent to (y

(1)
1 , y

(1)
2 , y3)

regardless of the value of y3 [22]. Equation 2.5 displays this concept.

(y
(2)
1 , y

(2)
2 , y3) � (y

(1)
1 , y

(1)
2 , y3),∀y3 (2.5)

In a two attribute decision space with attributes, y1 and y2, y1 is said to be utility

independent of y2 if the conditional preferences of y1 given a certain value of y2 do not

depend on the value of y2 [22]. In other words, the conditional utility function over y1

given a fixed value of y2 is a positive linear transformation of the conditional utility

function over y1 given y2 is fixed at any other value [22]. If y1 is utility independent

of y2, then the two-attribute utility function must be of the form in Equation 2.6,

u(y1, y2) = g(y2) + h(y2)u(y1, y
(1)
2 ), (2.6)

where g(y2) and h(y2) are both functions that depend on y2 only and u(y1, y
(1)
2 ) is the

conditional utility function over y1 given y2 = y
(1)
2 [23].

Two attributes, y1 and y2, are said to be additive independent if the comparison

between any two prospects depends only on the marginal preference structure of the

two attributes. Consider two levels of each attribute, y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 . If y1 and y2
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are additive independent, then the lottery with equal chances of the two prospects,

(y
(1)
1 , y

(1)
2 ) and (y

(2)
1 , y

(2)
2 ) is equivalent to the lottery with the two prospects, (y

(1)
1 , y

(2)
2 )

and (y
(2)
1 , y

(1)
2 ), with equal chances [23].

If two attributes are additive independent, the two-attribute utility function is

additive and can be written as in Equation 2.7.

u(y1, y2) = ky1uy1(y1) + ky2uy2(y2) (2.7)

The utility function is normalized such that u(y01, y
0
2) = 0 and u(y∗1, y

∗
2) = 1. The

marginal utility function, uyi(yi), is normalized such that uyi(y
0
i ) = 0 and uyi(y

∗
i ) = 1

(i = 1, 2). The constants, ky1 and ky2 are calculated such that ky1 = u(y∗1, y
0
2) and

ky2 = u(y01, y
∗
2) [23].

Richard [39] defines multivariate risk aversion as the condition in which the de-

cision maker prefers a lottery with an even chance of the prospects, (y
(1)
1 , y

(2)
2 ) or

(y
(2)
1 , y

(1)
2 ), where y

(1)
i < y

(2)
i , i = 1, 2 to a lottery with even chances for (y

(1)
1 , y

(1)
2 ) or

(y
(2)
1 , y

(2)
2 ). Indifference between these two lotteries is referred to as multivariate risk

neutrality. A preference of the second lottery to the first is multivariate risk seeking

behavior. Richard shows that the sign of the mixed partial derivative of the utility

function indicates the multivariate risk preference expressed by the utility function

[39]. Table 1 gives the results.

Table 1. Sign of utility function’s mixed partial derivative compared to multivariate
risk preference

Sign of Multivariate
∂2

∂y1∂y2
U(y1, y2) Risk Preference

- averse
0 neutral
+ seeking
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2.2.6 Utility Transversality.

Matheson and Abbas introduce the concept of utility transversality in the multi-

attribute case where a utility function is assigned over a multiattribute value function

[31]. Equation 2.8 shows the general formulation of such a utility function,

U(y1, . . . , yn) = UV (V (y1, . . . , yn)), (2.8)

where y1, . . . , yn are the attributes under consideration, V (y1, . . . , yn) is the deter-

ministic value function over these attributes, and UV (V ) is the utility function with

respect to value [31].

Assuming that the utility and value functions are both monotonically increasing

and twice differentiable, the risk aversion function with respect to a single attribute,

yi, i = 1, . . . , n, is given in Equation 2.9,

γUyi = −
U ′′yi
U ′yi

, (2.9)

where U ′′yi = ∂2U(y1, . . . , yn)/∂y2i and U ′yi = ∂U(y1, . . . , yn)/∂yi [31].

Considering the two dimensional case where U(y1, y2) = UV (V (y1, y2)) and fol-

lowing the chain rule of differentiation, Matheson and Abbas [31] show that the risk

aversion with respect to a single variable is

γUy1 = γUV V
′
y1

+ γVy1 . (2.10)
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The risk aversion with respect to value is γUV . The partial derivative of value with

respect to y1 is V ′y1 = ∂V (y1, y2)/∂y1. Matheson and Abbas define γVy1 as the value

function’s contribution to the risk aversion with respect to y1 as

γVy1 = −
V ′′y1
V ′y1

, (2.11)

where V ′′y1 = ∂2V (y1, y2)/∂y
2
1 [31]. This is analogous to the definition of risk aversion

shown in Equation 2.1.

The risk aversion with respect to a single attribute is defined completely by the

risk aversion with respect to value and the form of the deterministic value function

itself. Since the value function is deterministic and can be assessed by specifying the

deterministic tradeoffs between attributes, then assessing the utility function over

value determines the risk aversion function for all attributes [31].

Matheson and Abbas define the utility transversality relation as the relationship

between the risk aversion functions of the various attributes and is shown in Equation

2.12 [31].

γUy1 = (γUy2 − γ
V
y2

)t+ γVy1 (2.12)

The value, t, is the deterministic tradeoff function between the attributes y1 and y2

along an isopreference contour, calculated as in Equation 2.13 [31].

t(y1, y2) =
V ′y1
V ′y2

= −dy2
dy1
|isopreference contour (2.13)

2.2.7 Attribute Dominance.

Abbas and Howard introduced the concept of attribute dominant utility functions

[4]. This special class of multiattribute utility functions satisfies four conditions.
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Consider a two-attribute decision situation where a given prospect can be written

as (y1, y2) and the two attributes, y1 and y2, fall within the respective ranges, y1 ∈

[y01, y
∗
1] and y2 ∈ [y02, y

∗
2]. Assume the attributes can be ordered such that (y01, y

0
2) is

the least preferred prospect and (y∗1, y
∗
2) is the most preferred. Assume the attributes

are mutually preferentially independent and the prospects are arranged such that for

any y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 , the following conditions hold [4].

y
(2)
1 ≥ y

(1)
1 ⇒ (y

(2)
1 , y2) � (y

(1)
1 , y2)∀y2 ∈ [y02, y

∗
2] and

y
(2)
2 ≥ y

(1)
2 ⇒ (y1, y

(2)
2 ) � (y1, y

(1)
2 )∀y1 ∈ [y01, y

∗
1] (2.14)

Assume a multiattribute utility function Uy1y2(y1, y2) exists with range as given

in Equation 2.15 [4].

0 ≤ Uy1y2(y1, y2) ≤ 1,∀y1 ∈ [y01, y
∗
1], y2 ∈ [y02, y

∗
2] (2.15)

Based on this formulation, the utility of the prospects, (y01, y
0
2) and (y∗1, y

∗
2), are as

shown in Equation 2.16 [4].

Uy1y2(y
0
1, y

0
2) = 0, Uy1y2(y

∗
1, y
∗
2) = 1 (2.16)

With the preceding assumptions, an attribute dominance utility function is one

where a prospect, (y1, y2), is a least preferred prospect if at least one of its attributes,

y1 or y2, is at its minimum value. Equation 2.17 describes this condition [4].
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Uy1y2(y
0
1, y

0
2) = Uy1y2(y

0
1, y2) = Uy1y2(y1, y

0
2) = 0,

∀y1 ∈ [y01, y
∗
1], y2 ∈ [y02, y

∗
2] (2.17)

2.3 Response Surface Methodology

Response Surface Methodology (RSM) is a set of mathematical and statistical

tools used to optimize systems [33]. RSM provides techniques to estimate a model

of the system of interest by running an experiment varying the input variables of

interest and measuring the response of interest [32]. A function is estimated from the

results of such an experiment as shown in Equation 2.18

y = βx + ε (2.18)

where y is the response in question, x is the vector of input variables, β is a vector

of coefficients estimated from the experiment and ε is a random variable representing

the random noise within the system [32].

Equation 2.18 can be extended to multiple responses using a vector of responses,

y, a matrix of coefficients, B, and a vector of random noise variables, ε. Equation

2.19 shows such an equation.

y = Bx + ε (2.19)

Classic RSM and regression techniques are built around systems occurring in

nature or in man-made environments. Special considerations must be given when an-

alyzing computer simulation models. Common random numbers are commonly used

when comparing different simulation scenarios since they can sharpen the compari-

17



son between scenarios. When attempting to estimate the simulation model with a

regression polynomial, non-overlapping pseudo-random number (PRN) streams must

be used at the different design points so the outputs are independently identically

distributed as RSM methods assume [27].

One other difference in a computer simulation experiment is that it can be ac-

complished sequentially without needing to consider blocking the the analysis. In a

classic experiment, the experimenter would generally randomize the order of the de-

sign points to remove any ordering bias. If an augmented design were to be added to

this experiment, the experimenter would have to analyze the data with that sequence

in mind since the augmented design points were not randomized with the original

set. A computer simulation experiment can be sequenced similarly without any ad-

ditional concern to the change in analysis due to the augmented design. The order

of the experiment does not affect the computer output if a non-overlapping random

stream of PRNs is used to initiate any design points [27].

2.3.1 Desirability Function.

Harrington introduces the desirability function in order to find an optimal solu-

tion when optimizing multiple, often competing, objectives simultaneously [15]. The

desirability function scales each objective measure, yi, to a scale between 0 and 1,

denoted by di. The overall desirability of a given solution is the geometric mean of

the individual desirabilities as shown in Equation 2.20 [15]. The optimal solution is

the vector of yi’s that produces the largest overall desirability, D.

D = (d1d2 · · · dn)
1
n (2.20)
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Derringer and Suich modify the function for the individual objective desirabilities

so that they are more flexible [13]. Equation 2.21 shows the function for an individual

objective’s desirability where a maximum value of the response, yi, is desired.

di =


0, yi ≤ Li[
yi−Li

Ti−Li

]ri
, Li < yi < Ti

1, yi ≥ Ti

(2.21)

The parameters, Li, Ti, and ri, are provided by the decision maker. The param-

eter Li indicates the minimum acceptable value of yi. Any value of yi below Li is

unacceptable. This qualitative characteristic is expressed in the desirability function

by forcing di = 0 which then forces the overall desirability to D = 0 as well. The

parameter Ti is an optimal value of yi or the point at which any more yi would give

no additional value. The parameter ri controls how quickly the individual objective

desirability increases from 0 to 1 as yi increases from Li to Ti. Figure 2 depicts how

different values of ri affect the desirability function.
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Figure 2. Maximizing desirability functions, di, for various levels of ri [13]
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Equation 2.22 shows the function for an individual objective’s desirability where

a minimum value of the response, yi, is desired.

di =


1, yi ≤ Ti[
yi−Ui

Ti−Ui

]ri
, Ti < yi < Ui

0, yi ≥ Ui

(2.22)

The parameters, Ui, Ti, and ri, are similarly provided by the decision maker. The

parameter Ui is the maximum value of yi. Any value above this is unacceptable to

the decision maker and will drive the overall desirability to D = 0. The parameter

ri is similar to its use in the maximizing function. The parameter Ti is the optimal

value of yi or the point at which any level of yi below this would warrant little extra

value [13].

At times, a specific target value is desired. In this case, a two-sided transformation

is applicable as shown in Equation 2.23.

di =



0, yi ≤ Li[
yi−Li

Ti−Li

]si
, Li < yi ≤ Ti[

yi−Ui

Ti−Ui

]ti
, Ti < yi < Ui

0, yi ≤ Ui

(2.23)

The parameters, Li and si, are synonymous to Li and ri in equation 2.21. The

parameters, Ui and ti, are synonymous to Ui and ri in equation 2.22. The parameter

Ti is the optimal value of the objective, yi. When yi = Ti, the individual desiribility,

di = 1 [13]. Figure 3 depicts two-sided transformations for various levels of si and ti.
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Figure 3. Two-sided desirability functions, di, for various levels of si and ti [13]
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2.3.2 Robust Optimization.

The optimal solution found in a multiple response situation using the desirabil-

ity function does not take uncertainty into consideration and does not consider the

variability of the responses [36].

Figure 4 illustrates the concept of a robust solution. The x-axis shows an input

variable affecting a maximum response along the y-axis. At x = x2, point B is clearly

the global maximum within this range. However, as x is allowed to vary from x2 by

r, the response drops ∆B, from y2 to y′2. Conversely, if the local optimum point A is

considered and x is allowed to vary from x1 by r, the response drops ∆A, from y1 to

y′1. In this situation, where ∆A < ∆B, point A can be considered more robust than

point B [16].

B 

A A 

B 

x1 x2 x1 + r x1 - r x2 + r x2 - r 

y’2 

y2 

y1 y’1 

Figure 4. Illustration of Robust Solution [16]

From a decision analysis perspective, the preference between point A and point

B is dependent upon the decision maker’s risk preference. A sufficiently risk averse
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decision maker would prefer point A. A decision maker tending toward risk neutral

or risk seeking behavior would prefer point B instead.

Taguchi introduces robust parameter design [46, 47] for situations where uncon-

trollable or nuisance factors exist and a solution that is insensitive to the variability

of these nuisance factors is desired.

Vining and Myers present a constrained optimization method using predictive

regression models for both the process mean and variance [51]. The robust solution is

found by either constraining the mean while minimizing the variance or constraining

the variance while optimizing the mean [51].

While these two methods focus on a single response of interest, Peterson, Miró-

Quesado and del Castillo present a robust approach to a multiple response problem

using Monte Carlo simulation [36]. After calculating the response equations to the

seemingly unrelated regression (SUR) model, they calculate the probability a given

set of inputs would give an acceptable set of output values using results from a Monte

Carlo simulation.

2.4 Stability, Security, Transition, and Reconstruction Operations

The National Security Strategy (NSS) [34] outlines the overall security strategy for

the nation. President Obama states the greatest threat to the American people is the

possibility of violent extremists obtaining weapons of mass destruction. Engagement

with other countries, especially emerging nations, is key to the NSS [34]. President

Obama notes the need for an interagency approach to this end. Assisting develop-

ing countries join the world economy, manage their security needs, and assist their

governments to lead their nations with an eye to human rights is imperative. The

military’s role includes excelling at counterterrorism and stability operations while

maintaining readiness to address the full range of military operations [34].
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Stability operations are essential to keeping a safe and secure environment for

U.S. interests abroad. Department of Defense Instruction (DoDI) 3000.05 [48] states

stability operations are a core U.S. military mission and should be conducted across

the range of military operations. Further, U.S. military operations must strike “ap-

propriate balance between offensive and defensive operations and stability operations

in all phases” [49].

Military stability operations are planned based on effects based operations (EBO)

as outlined by the United States Joint Forces Command [50]. A nation or region in

question is characterized as a system of systems in terms of its political, military,

economic, social, infrastructure, and information (PMESII) systems. The effects of

diplomatic, informational, military and economic (DIME) instruments of national

policy is then modeled to estimate the PMESII effects within the nation or region in

question [50].

The current NSS is interested in developing diplomatic relations, security mea-

sures, and economic markets in African nations [34]. The U.S. is particularly con-

cerned about assisting the Democratic Republic of Congo (DRC) in its efforts to create

a secure, stable government. Concern still exists about human rights violations in the

DRC after its recent presidential election [12].

2.5 National Operational Environment Model

The National Operational Environment Model (NOEM) is a simulation model

representing a nation-state or region used to test a variety of courses of actions [42].

NOEM subscribes to the DIME and PMESII paradigm while modeling nation security

and stability [43]. The main contributions to NOEM come from Richardson [40],

Robbins [41], and Fensterer [14]. Richardson [40] applies system dynamics modeling
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techniques to a Stability and Reconstruction effort at a national level. This allows a

statistical analysis of various high-level policy choices.

Robbins [41] improves upon this idea by developing a more detailed model, the Sta-

bilization and Reconstruction Operations Model (SROM), which allows for more com-

prehensive analysis of the nation-building efforts. SROM models DIME and PMESII

interactions at the sub-national, regional level which allows testing of a wide variety

of policy options on a national or regional basis.

Fensterer [14] uses a Value Focused Thinking strategy to capture the important

values of nation state stability. Using Department of Defense (DoD) guidance, Fen-

sterer suggests five fundamental values of stability: Economy, Governance, Rule of

Law, Security, and Social Well-Being.

Based on this research, SROM was re-engineered at the Air Force Research Labo-

ratory to become NOEM [42]. NOEM contains several modules to model the complex

and critical DIME and PMESII interactions within a region. Although most modules

contain deterministic models, an Agent-Based model represents the population and

provides a stochastic element to the overall model [42].
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III. Methodology

3.1 Research Methodology

This chapter develops the methodology used to examine the desirability function

and the methodology used to find a robust optimum solution from a decision anal-

ysis perspective. Section 3.2 an analysis of the desirability function from a decision

analysis perspective. Section 3.2.1 analyzes the desirability function as a value func-

tion. Sections 3.2.2 and 3.2.3 analyze a utility function assessed over the desirability

function. Section 3.3 develops the methodology taken to find a robust decision point

within a multiple response system.

3.2 Desirability Function Analysis

This section presents an analysis of Derringer and Suich’s desirability function

[13] from a decision analysis perspective. Two different cases are examined. In the

first case, assume the desirability function is a value function. In the second case,

assume the desirability function is a utility function. The analysis focuses on the

two-dimensional case with responses, y1 and y2. The analysis is generalized to an

n-dimensional case, which is presented in Appendix A.

The desirability function for the 2-dimensional case is

D = (d1d2)
1
2 . (3.1)

Consider a system with n inputs, (x1, . . . , xn). Each input, xi falls within the ex-

perimental region defined by xi ∈ [x0i , x
∗
i ], i = 1, . . . , n. These inputs cause changes

in two responses, y1 and y2 which each fall within the range, yi ∈ [y0i , y
∗
i ], i = 1, 2.

This analysis focuses on the case where a maximum response is desired as displayed
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in Equation 2.21 with no loss of generality since the other forms of the desirability

function can be transformed into this case. Only the non-trivial piece of Equation

2.21 where Li < yi < Ti, i = 1, 2 is considered. Equation 3.2 displays this non-trivial

piece.

di =

[
yi − Li
Ti − Li

]ri
, Li < yi < Ti (3.2)

Where [Li, Ti] ⊆ [y0i , y
∗
i ], i = 1, 2. This forces 0 < D < 1.

3.2.1 Desirability function as value function.

Consider the case in which the desirability function is used as a value function. The

desirability function can be used as a value function if the decision maker assumes the

expected responses from the regression equations are deterministic. The deterministic

trade-off between the two attributes can then be examined using the tradeoff function

as defined in Chapter II.

t(y1, y2) =
D′y1
D′y2

= −dy
dx
|isopreference contour (3.3)

The deterministic tradeoffs between the two attributes can then be stated.

t(y1, y2) =
r1
r2

[
y2 − L2

y1 − L1

]
(3.4)

Equation 3.4 indicates how many units of y2 the decision maker is willing to give

up in order to increase y1 by one unit, at the point (y1, y2). In this case, the tradeoff

is a ratio of the two exponents r1 and r2 multiplied by the ratio of the differences

between the two current values of yi and their respective minimum acceptable values,

Li. Table 2 shows how the tradeoff changes as each response or parameter is increased

while all others are held constant. Interestingly, the two target values, T1 and T2,
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cancel out of the function when the ratio of the two partial derivatives of the overall

desirability function is calculated.

Table 2. Tradeoff varies with respect to different variables increasing

Variable increasing Effect on
(all else constant) t(y1, y2)

y1 decreases
y2 increases
r1 increases
r2 decreases
L1 increases
L2 decreases

The desirability function tends to move the responses away from their minimum

values. When a response is pushed near its minimum value, its individual desirability,

di, tends to zero.

For a constant value of y2, t(y1, y2) decreases as y1 increases. As y1 increases from

its minimum, d1 increases from zero which increases the overall desirability. The

further y1 is from its minimum, the less y2 a decision maker is willing to give up for

further increases in y1.

For a constant value of y1, t(y1, y2) increases as y2 increases. The same argument

applies as above. The further y2 is from its minimum, the more y2 a decision maker

is willing to give up for further increases in y1.

Consider the following example where y2 is 10 units above its minimum value, y1

is two units over its minimum, and r1 = r2 = 1. The decision maker is willing to

reduce y2 by five units to increase y1 by one unit. See Equation 3.5.

t(L1 + 2, L2 + 10) =
1

1

[
10

2

]
= 5 (3.5)

Now let y2 be one unit above its minimum value not 10 units, as above and keep

all other values the same. The decision maker is only willing to reduce y2 by 0.5 units
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to increase y1 by one unit. Equation 3.6 depicts this result. After y2 is reduces from

10 to 1, the decision maker does not have as much excess y2 to pay in order to increase

y1. The decreased level of y2 results in a lower tradeoff between the two attributes.

t(L1 + 2, L2 + 1) =
1

1

[
1

2

]
= 0.5 (3.6)

Increasing r1 increases the trade-off. As r1 increases, d1 decreases for a given value

of y1. A higher r1 implies the higher values of y1 are worth a premium; the decision

maker is willing to decrease more of y2 in order to increase y1. A smaller r1 allows a

much lower y1 to achieve higher desirability.

Increasing r2 decreases the tradeoff. As r2 increases, d2 decreases for a given value

of y2. A higher r2 implies the higher values of y2 are worth a premium; the decision

maker is willing to decrease y2 less in order to increase y1.

Increasing L1 increases the tradeoff. The minimum level of y1 is being increased,

forcing d1 closer to zero for a fixed y1. As y1 approaches its minimum value (by raising

that minimum aspiration level), the decision maker is willing to decrease y2 more to

increase y1.

Increasing L2 decreases the tradeoff. The minimum level of y2 is being increased,

forcing d2 closer to zero for a fixed y2. As y2 approaches its minimum value (by raising

that minimum aspiration level), the decision maker is willing to decrease y2 less to

increase y1.

This tradeoff analysis conflicts with the analysis Kros and Mastrangelo [29] apply

to the desirability function. Their analysis incorrectly takes the partial derivative

of the desirability function with respect to di and concludes that the desirability

function implies a constant trade-off of one [29]. Their analysis considers the trade-

off with respect to the two competing desirabilities. However, the trade-off between
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two attributes needs to be calculated with respect to the attributes themselves [31],

not their desirability. In this case, that is with respect to the responses, y1 and y2.

3.2.2 Assessing a utility function over the desirability function.

When uncertainty is present in a decision situation, a utility function is required

for proper assessment. As described in Chapter II, one method of formulating a

multiattribute utility function is to assign a single attribute utility function over

a multiattribute value function. Assume a 2-dimensional deterministic desirability

function (Equation 3.1). Consider the case of constant risk aversion over desirability

as a value function. Assume the following utility function

U = 1− e−γD, (3.7)

where D is the value of the desirability function and γ is the constant risk aversion

with respect to this desirability. Assume the decision maker is risk averse with respect

to desirability (i.e., γ > 0). Howard [19] notes through practical experience that most

decision makers are risk averse in their attitude for risk taking.

Following the concepts developed by Matheson and Abbas [31], the risk aversion

function for each attribute is expressed. The utility function’s risk aversion with

respect to the first response, y1, is examined first. The risk aversion with respect to

the second response follows.

The risk aversion of the utility function with respect to the first attribute, y1, is

γUy1 = γUDD
′
y1

+ γDy1 . (3.8)

30



Consider each term in Equation 3.8. The risk aversion for the utility function with

respect to the desirability function is simply

γUD = γ. (3.9)

The partial derivative of D with respect to y1 is

D′y1 =
r1

2(T1 − L1)

[
y1 − L1

T1 − L1

] r1
2
−1 [

y2 − L2

T2 − L2

] r2
2

. (3.10)

The contribution of the desirability function to the risk aversion of the attribute

y1 is

γDy1 =
1− r1

2

y1 − L1

. (3.11)

Substituting these expressions into Equation 3.8 provides the risk aversion ex-

pressed by this utility function with respect to y1.

γUy1 =
γr1

2(y1 − L1)

[
y1 − L1

T1 − L1

] r1
2
[
y2 − L2

T2 − L2

] r2
2

+
1− r1

2

y1 − L1

(3.12)

From Equation 3.12, it is clear that the risk aversion with respect to y1 is de-

pendent on the ranges of both responses, the values of both responses, the exponent

assigned to each response, and the constant risk aversion coefficient in the utility func-

tion over desirability. Based on the assumptions made in this case, every segment

of this expression is positive with the exception of the numerator of the desirability

function’s contribution to risk aversion, 1− r1
2

. The sign of this contribution depends

on the exponent r1 and the sign switches at r1 = 2. Examining the cases of r1 less

than, equal to, and greater than two provides further insight.

For r1 < 2, each component of Equation 3.12 is positive; therefore, the utility

function indicates risk aversion with respect to y1. That being said, this aversion to
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risk varies with respect to changes in the inputs to the risk aversion function. Table

3 shows how risk aversion changes with respect to individual variables increasing,

assuming all other inputs remain constant.

Table 3. Risk aversion varies with respect to different variables increasing when r1 < 2

Variable increasing Effect on
(all else constant) γU

y1

γ increases
y1 decreases
y2 increases
r1 varies
r2 decreases
L1 increases
L2 decreases
T1 decreases
T2 decreases

As γ, the risk aversion coefficient with respect to desirability, increases, showing

increased risk aversion over desirability, the risk aversion with respect to an individual

attribute increases.

As y1 increases, the utility function displays a decreased risk aversion to y1. The

closer y1 is to its target value, the decision maker can better afford taking a risk in

y1.

The variables associated with the other response, y2, r2 and L2, affect risk prefer-

ence due to the interaction within the desirability function. As mentioned in Chapter

II and explicitly indicated by γUy1 , the risk aversion with respect to a single attribute

is defined in part by the form of the value function. In this case, the desirability func-

tion is a value function. The risk attitude reaction to increases in y2 and r2 match

exactly with the tradeoff reactions in Table 2.
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How γUy1 varies with respect to r1 is more complicated. Equation 3.13 shows the

partial derivative of the risk aversion, γUy1 , with respect to r1.

∂

∂r1
γUy1 =

1

4(y1 − L1)

(
γ

[
y1 − L1

T1 − L1

] r1
2
[
y2 − L2

T2 − L2

] r2
2
[
2 + r1 ln

[
y1 − L1

T1 − L1

]]
− 2

)
(3.13)

This partial derivative is not strictly positive or negative. The sign of this par-

tial derivative depends on the expression within the parentheses. If d1 ≤ e−2, then

∂
∂r1
γUy1 < 0. However, the converse is not true.

Figure 5 shows isopreference curves for various values of γ, with d1 on the hor-

izontal axis and d2 on the vertical axis. If (d1, d2) lies on an isopreference curve,

∂
∂r1
γUy1 = 0. If (d1, d2) lies southwest of this isopreference curve, ∂

∂r1
γUy1 < 0 and if

(d1, d2) lies northeast of this curve, ∂
∂r1
γUy1 > 0.

Figure 5. Isopreference curves of γ with respect to (d1, d2) that make ∂
∂r1

γUy1
= 0
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The decision maker must be aware of unintentional consequences of adjusting

r1. Figure 5 shows how increasing r1 increases risk aversion with respect to y1 for

a particular area of the desirability while simultaneously decreasing risk aversion

with respect to y1 for its complimentary area. As γ decreases, the decision maker is

moving towards risk neutrality. This action also decreases the area where ∂
∂r1
γUy1 > 0

and increases the area where ∂
∂r1
γUy1 < 0

As L1 increases, risk aversion increases. The minimum level of y1 is being in-

creased, forcing d1 closer to zero for a fixed y1. As y1 approaches its minimum value

(by raising that minimum aspiration level) the utility function expresses more risk

aversion with respect to y1.

As T1 increases, risk aversion decreases. Since a fixed value of y1 is being placed

further from its target, the utility function expresses less risk aversion. Increasing the

size of the interval [L1, T1] decreases risk aversion with respect to y1 while decreasing

the size of the interval [L1, T1] increases risk aversion with respect to y1.

As T2 increases, risk aversion decreases. Since a fixed value of y2 is being placed

further from its target, the utility function expresses less risk aversion.

For r1 = 2, parts of Equation 3.12 cancel out, leaving only positive expressions.

It follows that the utility function expresses risk aversion with respect to y1. This

aversion to risk varies with respect to changes in the inputs to the risk aversion

function. Table 4 shows how risk aversion changes with respect to individual variables

increasing, assuming all other inputs remain constant.

The only difference between Table 4 and Table 3 (denoted by the asterisk) is that

the response y1 has no effect on the risk aversion expressed with respect to y1. This

is due to the fact that the exponent r1/2 = 1 and y1 then cancel out of γUy1 . When

r1 = 2, the desirability function is said to be risk-contribution neutral with respect

to y1 since γDy1 = 0 [31].
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Table 4. Risk aversion varies with respect to different variables increasing when r1 = 2

Variable increasing Effect on
(all else constant) γU

y1

γ increases
y1 no effect*
y2 increases
r2 decreases
L1 increases
L2 decreases
T1 decreases
T2 decreases

For r1 > 2, the desirability function’s contribution to risk aversion, γDy1 , is negative.

The utility function can express risk seeking, risk neutral, or risk aversion with respect

to y1. Table 5 shows how risk aversion changes with respect to individual variables

increasing, assuming all other inputs remain constant.

Table 5. Risk aversion varies with respect to different variables increasing when r1 > 2

Variable increasing Effect on
(all else constant) γU

y1

γ increases
y1 increases*
y2 increases
r1 varies
r2 decreases
L1 varies*
L2 decreases
T1 decreases
T2 decreases

When comparing the results shown in Table 5 with the results shown in Table 3,

it is seen that the utility function displays increasing risk aversion with respect to

y1 as the response, y1, increases. Increasing risk aversion is not how most decision

makers prefer their risk aversion to be modeled.

Another change in this case is how L1 affects risk aversion with respect to y1.

Equations 3.14 and 3.15 display the partial derivative of γUy1 with respect to L1.
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∂

∂L1

γUy1 =
1

2(y1 − L1)2

[
γr1

[
y1 − L1

T1 − L1

] r1
2
[
y2 − L2

T2 − L2

] r2
2
(

1− r1(T1 − y1)
2(T1 − L1)

)
+ 2− r1

]
(3.14)

=
1

2(y1 − L1)2

[
γr1D

(
1− r1(T1 − y1)

2(T1 − L1)

)
+ 2− r1

]
(3.15)

This partial derivative is no longer monotonic. Table 6 displays the sign of ∂
∂L1

γUy1

based on the value of r1. When r1 ∈ [2, 2(T1−L1)
T1−y1 ] the sign of ∂

∂L1
γUy1 can be either pos-

itive or negative depending on the relationship of the parameters within the brackets

of Equation 3.15.

Table 6. Sign of ∂
∂L1

γUy1
based on r1

Value of Sign of
r1

∂
∂L1
γU
y1

r1 < 2 +

2 < r1 <
2(T1−L1)
T1−y1 +/0/-

r1 >
2(T1−L1)
T1−y1 -

The decision maker must be aware of the unintended consequences adjusting the

bounds on responses has on risk preference.

3.2.3 Conjugate Desirability Function.

The exponential utility function over desirability example produced a case where

the utility function over value was from a different family of utility functions than the

marginal utility functions over the attributes. In many cases, a decision maker may

want to express the same risk preference for all the attributes as is expressed for the

given value function. In considering this case, Matheson and Abbas present the idea

of a conjugate value function [31].
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A value function is said to be conjugate to a utility function over value if the

marginal utility function over an attribute is of the same family as the utility function

over value [31].

Consider a logarithmic utility function over desirability as shown in Equation 3.16.

U = lnD (3.16)

The risk aversion with respect to desirability is

γUD =
1

D
. (3.17)

The partial derivative of D with respect to y1, D
′
y1

, and the contribution of the

desirability function to the risk aversion of y1, γ
D
y1

are shown in Equations 3.10 and

3.11 respectively. The risk aversion with respect to y1 is

γUy1 =
1

y1 − L1

. (3.18)

Matheson and Abbas state “the product value function is conjugate to the loga-

rithmic utility function” [31]. It follows that the desirability function is conjugate to

the logarithmic utility function.

3.2.4 Desirability function as a utility function.

If the desirability function itself is assumed to be a utility function, it follows Abbas

and Howard’s definition of an attribute dominance utility function [4] since its value

is zero if any of the attributes is at or below its minimum acceptable value. When
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considering the desirability function in this manner, it is denoted as Dd. Equation

3.19 shows the two-dimensional case when Li < yi < Ti, i = 1, 2.

Dd
y1y2

(y1, y2) =

[
y1 − L1

T1 − L1

] r1
2
[
y2 − L2

T2 − L2

] r2
2

(3.19)

Equation 3.20 gives the marginal utility function for the first attribute.

Dd
y1

= Dd
y1y2

(y1, T2) =

[
y1 − L1

T1 − L1

] r1
2

(3.20)

Equation 3.21 gives the conditional utility function for the second attribute given

a certain level of the first attribute.

Dd
y2|y1(y2|y1) =

Dd
y1y2

(y1, y2)

Dd
y1

=

[
y2 − L2

T2 − L2

] r2
2

(3.21)

Since Equation 3.21 does not depend on the value of y1, the conditional utility

function is equal to the marginal utility function and it is seen that the desirability

function displays utility independence of the two attributes. The desirability function

can then be expressed as in Equation 3.22.

Dd
y1y2

(y1, y2) = Dd
y1

(y1)D
d
y2

(y2) (3.22)

With this assumption of utility independence, the analyst can simply assess the

marginal utility functions of each attribute separately and then multiply them to

create the overall desirability function. Equation 3.22 is a special case of Equation

2.6 which depicts the general case of a utility function expressing utility independence.

The attribute y1 is utility independent of y2 if the conditional preferences of y1

given a certain value of y2 do not depend on the value of y2 [22]. If the attributes

are not utility independent, the analyst should not use the desirability function as a

utility function.

38



Equation 3.23 gives the risk aversion of the marginal utility function of the first

attribute.

γy1 =
1− r1

2

y1 − L1

(3.23)

Kros and Mastrangelo present erroneous conclusions regarding the risk aversion

of the desirability function [29]. For ri = 2, the desirability function reflects risk

neutrality with respect to yi. For ri < 2 the desirability function reflects decreasingly

risk averse behavior. For ri > 2, the desirability function reflects decreasingly risk

seeking behavior. This breakpoint in modeling risk preference is dependent on the

number of objectives. When generalized to n-dimensions, the desirability function

reflects risk neutrality when ri = n. The desirability function reflects risk averse and

risk seeking behavior when ri < n and ri > n respectively.

The mixed partial derivative of the desirability function is shown in Equation 3.24.

∂2Dd
y1y2

(y1, y2)

∂y1∂y2
=

r1r2
4(y1 − L1)(y2 − L2)

[
y1 − L1

T1 − L1

] r1
2
[
y2 − L2

T2 − L2

] r2
2

(3.24)

This mixed partial derivative is always positive over the range Li < yi < Ti, i =

1, 2. Therefore, the desirability function displays multivariate risk seeking behavior

[39]. This type of behavior makes sense in an attribute dominance utility function,

since the overall utility is zero if any one of the attributes is at its minimum level.

The fact that the desirability function sets the overall desirability to zero if any

of its attributes is at or below its minimum values, regardless of the values of the re-

maining attributes merits discussion. Consider the following three attribute relation.

D(L1 + ε, L2 + ε, L3 + ε) > D(L1 − ε, T2, T3) = 0, (3.25)
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where ε > 0 is small. Consider the right hand side of Equation 3.25. Even with the

second two attributes at their target values, since the first attribute is slightly below

its minimum value, its desirability is zero. Consider the left hand side of Equation

3.25. With all three attributes slightly above their minimum values, the desirability

is a small positive number and is therefore greater than the right hand side. Care

must be taken to ensure a valid minimum value is decided upon before applying the

desirability function. An elevated minimum value could reject a potentially acceptable

decision point. Moreover, changing the minimum values of the responses also affects

the trade-off and risk aversion functions. In decision analysis, a value (or utility)

function is stipulated over any valid domain of interest in the attempt to avoid such

errors (i.e., Li = y0i and Ti = y∗i , ∀i).

3.3 A Decision Analysis Perspective on Robust Optimization

A set of regression equations is developed from an experimental design over the

decision space. Once the decision maker selects the proper user-defined parameters,

the maximum desirability is calculated and its location found within the feasible

region.

Since the desirability function is not differentiable throughout its range, a non-

gradient optimization algorithm must be used. The Hooke and Jeeves Direct Search

algorithm [17, 20, 8] is implemented in Excel using Visual Basic for Applications

(VBA). Since the starting point is critical when using such an algorithm over such

un-smooth surfaces, multiple starting points are chosen throughout the feasible region.

This is accomplished by taking a random sampling of the feasible region or by dividing

the feasible region into a grid of equally spaced vertices along each dimension of the

decision space. The code iterates through each starting point for the direct search

algorithm. The code outputs the location and desirability of all local maxima. To

40



confirm the results of the direct search algorithm, the local maxima is also calculated

using the differential evolution algorithm within Matlab [38]. Once the deterministic

local maxima are calculated, the Direct Search algorithm is re-run calculating the

desirability function in a Monte Carlo simulation.

Clemen and Reilly discuss using regression equations for decision analysis. These

equations estimate the conditional expected value of a response given a set of input

variables. The difference between the observed value and the predicted value of the

response is the residual. This set of residuals can be used to estimate the continuous

distribution function (CDF) of the random error term, ε, as described in Equation

2.18 in Chapter II [11]. This CDF is approximated with a Beta distribution using

the residuals as the fractile midpoints in Matlab’s fminsearch function as described

in Abbas et al [3] and reviewed in Section 2.2.4.

The correlation of the residuals, R, is calculated and then the random samples for

the Monte Carlo simulation is calculated using the multivariate normal copula [10].

Matlab’s mvnrnd function generates a matrix of random vectors from a multivari-

ate standard normal distribution with correlation R. Equation 3.26 displays how the

vector of random samples (ε1, . . . , εn) is calculated,

(ε1, . . . , εn) = (F−11 [Φ(y1)], . . . , F
−1
n [Φ(yn)]), (3.26)

where Φ is the standard normal CDF and F−1i , i = 1, . . . , n is the i-th inverse Beta

marginal CDF estimated from the residuals.

Using each local maximum as the starting point, the solution to

max
y(1)

n∑
i=1

(
1

n
D(y(1) + εi)

)
(3.27)
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is calculated where n is the number of random samples used in the Monte Carlo

simulation, εi is i-th vector random samples and y(1) is the vector of responses found

with the highest expected desirability. The global maximum is the robust solution

point for the system. Sensitivity analysis indicates the robustness of the solution.
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IV. Wire Bonding Experiment Findings

4.1 Multi-response optimization of semiconductor manufacturing process

Del Castillo et al. [9] introduce an experiment to illustrate a multi-response op-

timization problem using the desirability function. The experiment is executed to

optimize a wire bonding process in the semiconductor industry. The experiment has

three input factors and six responses. Table 7 contains the three factors and their low

and high values used in the experiment. Table 8 contains the response descriptions

and their acceptable ranges and target values.

Table 7. Factors and levels for example experiment [9]

Factor Levels
Factor Name Low High

A Flow Rate 40 120
B Flow Temp 200 450
C Block Temp 150 350

Table 8. Response descriptions and ranges for multiple response example [9]

Response - description Min Max Target
y1 = maximum temperature at Position A 185 195 190
y2 = beginning bond temperature at position A 170 195 185
y3 = finish bond temperature at position A 170 195 185
y4 = maximum temperature at position B 185 195 190
y5 = beginning bond temperature at position B 170 195 185
y6 = finish bond temperature at position B 170 195 185

Excel Analysis ToolPak is used to run an ordinary least squares (OLS) multiple

linear regression on the data del Castillo et al. provide from the experiment to

estimate the response equations [9].
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ŷ1 = −18.404 + 0.567x2 + 0.530x3 − 0.002x2x3 (4.1)

ŷ2 = 37.463 + 0.150x1 + 0.173x2 + 0.141x3 (4.2)

ŷ3 = 33.413 + 0.166x1 + 0.128x2 + 0.204x3 (4.3)

ŷ4 = 45.616 + 0.767x1 + 0.065x2 + 0.079x3 − 0.008x21 + 0.002x1x2 (4.4)

ŷ5 = 51.443 + 0.230x1 + 0.046x2 + 0.165x3 − 0.004x21 + 0.001x1x2 (4.5)

ŷ6 = 36.066 + 0.239x1 + 0.049x2 + 0.274x3 − 0.003x21 + 0.001x1x2 (4.6)

4.2 Deterministic optimum setting

The two-sided desirability function from Equation 2.23 is used to find the optimum

operating environment within the experimental region described in Table 7. Using

the Min, Max, and Target values from Table 8 as the values of Li, Ui, Ti, i = 1, . . . , 6

and Equations 4.1 through 4.6, the Hooke-Jeeves (HJ) algorithm finds the maximum

desirability and its operating solution for various risk preferences. Table 9 contains

the exponent parameters used to express various risk attitudes.

Table 9. Exponent parameters used to express various risk attitudes

Risk Attitude
Averse Neutral Seeking

si, ti 3 6 9

In each of the risk attitude cases described in Table 9, the same two local optimum

solutions are found. Adjusting the exponents si and ti (i = 1, . . . , 6) such that si = ti

(i = 1, . . . , 6) will not change the optimum solution because the trade-off functions,

t(yi, yj), i 6= j does not change.
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Table 10 displays the two local optimum solutions and their predicted responses.

The desirability values shown are from the risk neutral case where si = ti = 6

(i = 1, . . . , 6). The first column contains the global optimum solution.

Table 10. Local deterministic operating solutions

Local Optimum Points
x1 120.000 82.192
x2 436.168 450.000
x3 320.297 330.453
ŷ1 186.391 185.939
ŷ2 176.162 174.318
ŷ3 174.378 171.955
ŷ4 193.277 192.861
ŷ5 173.139 172.910
ŷ6 184.364 185.000
D 0.0023 0.0006

These two local optimum solutions represent the two regions, A and B, where

D > 0 in the experimental region. Figure 6 represents Region A by displaying

desirability as Block Temperature and Flow Rate vary with Flow Temperature fixed

at x2 = 436.17. Figure 7 represents Region B by displaying desirability as Block

Temperature and Flow Rate vary with Flow Temperature fixed at x2 = 450.

The figures displaying Regions A and B with Flow Temperature and Block Tem-

perature held constant are presented in Appendix C. From all three dimensions of x,

Region A appears larger than Region B. Region A also contains the global optimum

solution.

Both del Castillo et al [9] and Kros and Mastrangelo [29] display results regarding

a global maximum for this experimental region using si = ti = 1, i = 1, . . . , 6. Table

11 compares the maximum solution displayed in both of these articles.

Del Castillo et al.’s solution is displayed in the first column of Table 11. Kros

and Mastrangelo’s solution is in the second column; it matches del Castillo et al.’s

solution closely. The third column is the solution found using the regression equations
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Figure 6. Value of D as Block Temp and Flow Rate vary (Flow Temp = 436.17)

Figure 7. Value of D as Block Temp and Flow Rate vary (Flow Temp = 450)
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Table 11. Comparing global maximum found for the del Castillo example[9, 29]

DC KM Self
x1 84.312 84.14 84.113
x2 450 450 450
x3 329.73 329.66 329.902
ŷ1 186.1 186.06 186.02
ŷ2 174.5 174.49 173.92
ŷ3 172.1 172.02 172.06
ŷ4 192.6 192.63 192.62
ŷ5 173.1 173.04 173.07
ŷ6 185 184.95 185.00
D 0.3076 0.3058 0.2989

stated by del Castillo et al. [9] in the HJ algorithm. Interestingly, this set of equations

produces a global maximium in Region B instead of region A as when using Equations

4.1 through 4.6.

4.3 Monte Carlo Simulation

The residuals based on the above model are used to estimate the marginal dis-

tribution functions for the six responses. Appendix B contains the residuals for this

regression model. The lower bound A for each response’s Beta distribution is chosen

by rounding its lowest residual down to the next integer value. The upper bound B

for each response is chosen by rounding its highest residual up to the next integer

value. Using these bounds, the α and β parameters are estimated using Matlab’s

fminsearch function. Table 12 contains the estimated parameters of the six marginal

Beta distribution functions.

Table 12. Estimated parameters for the marginal Beta distribution functions

Residual Residual Residual Residual Residual Residual
y1 y2 y3 y4 y5 y6

α 0.9980 0.9047 1.3739 0.8615 1.1511 1.1428
β 1.1914 0.9218 1.3411 0.9916 1.5732 1.2991
A -15 -11 -16 -9 -5 -5
B 31 21 30 18 11 10
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The correlation matrix R is calculated from the residuals as shown in Table 13.

Table 13. Correlation matrix of the residuals

1 0.7672 0.6728 0.4184 0.5533 0.3700
0.7672 1 0.8351 0.6260 0.8313 0.6369
0.6728 0.8351 1 0.5084 0.6988 0.5849
0.4184 0.6260 0.5084 1 0.8838 0.9232
0.5533 0.8313 0.6988 0.8838 1 0.9122
0.3700 0.6369 0.5849 0.9232 0.9122 1

Using Matlab’s mvnrnd function and the normal multivariate copula method, a

set of 10,000 sample residuals are constructed for the Monte Carlo simulation. To

confirm this random sample is from the intended distribution, the Beta distribution

parameter estimates and correlation matrix of the sample is calculated for comparison

with the residual data estimates. Table 14 contains the Beta parameters fit to the

sample.

Table 14. Beta distribution parameters fit to the Monte Carlo samples

Residual Residual Residual Residual Residual Residual
y1 y2 y3 y4 y5 y6

α 0.9688 0.8878 1.3584 0.8569 1.1485 1.1336
β 1.1618 0.9125 1.337 0.9789 1.571 1.2833

Table 15 contains the correlation matrix of the random sample. Both the param-

eters from the six marginal distributions and the correlation matrix from the random

sample resemble those calculated from the residuals.

Table 15. Correlation matrix for the Monte Carlo samples

1 0.7545 0.6592 0.4121 0.5452 0.3660
0.7545 1 0.8211 0.6092 0.8169 0.6224
0.6592 0.8211 1 0.4859 0.6791 0.5665
0.4121 0.6092 0.4859 1 0.8712 0.9127
0.5452 0.8169 0.6791 0.8712 1 0.9056
0.3660 0.6224 0.5665 0.9127 0.9056 1
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The Monte Carlo simulation is run using the random sample. First, the desirability

function is treated as a utility function. The HJ algorithm is started at both of the

local maxima displayed in Table 10. Risk aversion is modeled as described in Table

9. Table 16 displays the robust optimal solutions when si = ti = 3, 6, 9 (i = 1 . . . , 6).

Table 16. Robust optimal solutions varying by risk aversion

si, ti 3 6 9
x1 120 120 120
x2 407.190 429.415 431.174
x3 349.934 339.771 337.703

E(D) 0.0212 0.0037 0.0009

The robust optimal solution moves slightly as the exponents vary, but it remains

near Region A. The value of E(D) decreases as the exponent increases due to the

decreasing effect the exponent has on di. It appears, in this case, adjusting the

exponents in the desirability function does not affect which area of the operating

region contains the robust optimal solution when the desirability function is used as

a utility function. This is most likely due to Region A containing the highest peak

desirability and also being the larger region where D > 0.

The robust optimal solution is also calculated using the desirability function as a

value function and assessing an exponential utility function over it.

U = 1− e−γD (4.7)

The exponents, si, ti (i = 1, . . . , 6) vary as described in Table 9 in addition to

varying the risk aversion coefficient, γ = 0.2, 1, 5. Table 17 contains the set of robust

optimal solutions found in this case.

The robust optimal solution moves slightly as the exponents and γ vary, but it

remains near Region A. The value of E(U) decreases as the exponent increases due

to the decreasing effect the exponent has on di. The value of E(U) increases as γ
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Table 17. Robust optimal solutions varying γ, si, ti

γ si, ti 3 6 9

0.2 x1 120 120 120
x2 407.176 429.413 431.175
x3 349.990 339.778 337.703

E(U) 0.0042 0.0007 0.0002

1 x1 120 120 120
x2 407.192 429.348 431.329
x3 350 339.854 337.769

E(U) 0.0196 0.0035 0.0009

5 x1 120 120 120
x2 407.227 429.018 431.416
x3 350 340.449 337.873

E(U) 0.0739 0.0156 0.0043

increases due to the increasing effect it has on U. It appears, in this case, adjusting the

exponents or γ does not affect which area of the operating region contains the robust

optimal solution when an exponential utility function is assessed over the desirability

function. This is most likely due to Region A containing the highest peak desirability

and also being the larger region where D > 0.

The desirabilities calculated by adding the 10,000 sample residuals to the various

optimum solutions found provide insight into the robustness of the solutions. Consider

the case when si = ti = 3 (i = 1, . . . , 6). Table 18 contains the average and maximum

desirabilities calculated when using the deterministic solution shown in Table 10 and

the robust optimal solutions shown in Table 17.

Table 18. Maximum and average desirability for deterministic optimum and optimums
at γ = 0.2, 1, 5 when si = ti = 3

Deterministic γ = 0.2 γ = 1 γ = 5
E(D) 0.0109 0.0212 0.0212 0.0212

Max D 0.5129 0.4112 0.4109 0.4104

The deterministic solution produces a higher maximum desirability when adding

the set of 10,000 random residuals to it. However it produces a lower average de-
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sirability. The robust solutions found at γ = 0.2, 1, 5 produce different maximum

desirabilities, however the average desirability across this set is the same.

Figure 8 displays the distribution of desirabilities across the 10,000 samples. The

deterministic optimum solution is compared to the three robust solutions found with

γ = 0.2, 1, 5.

Figure 8. Compare the distribution of D between different values of γ and the deter-
ministic optimum when si = ti = 3)

The horizontal axis shows desirability. The vertical axis shows the number of sam-

ples with that particular desirability level on a logarithmic scale. The distributions of

the three robust solutions are very similar. However, the deterministic solution tends

to have fewer samples with higher desirabilities than the robust solutions have. In

this case, a risk averse or risk neutral decision maker would prefer one of the robust

solutions. A sufficiently risk seeking decision maker would prefer the deterministic

solution.
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Consider the exponential utility function

U = e−γD (4.8)

where γ < 0. This utility function describes risk seeking behavior with respect to

desirability and γUD = γ. When γ < −16.5, the deterministic solution is preferred to

the three robust solutions. This extreme risk seeking attitude is rarely modeled in

practice.

Consider the case when si = ti = 6 (i = 1, . . . , 6). Table 19 contains the average

and maximum desirabilities calculated when using the deterministic solution shown

in Table 10 and the robust optimal solutions shown in Table 17.

Table 19. Maximum and average desirability for deterministic optimum and optimums
at γ = 0.2, 1, 5 when si = ti = 6

Deterministic γ = 0.2 γ = 1 γ = 5
E(D) 0.0018 0.0037 0.0037 0.0037

Max D 0.2631 0.2873 0.2884 0.2893

The deterministic solution produces a lower maximum desirability and lower av-

erage desirability when adding the set of 10,000 random residuals to it. The robust

solutions found at γ = 0.2, 1, 5 produce different maximum desirabilities, however the

average desirability across this set is the same.

Figure 9 displays the distribution of desirabilities across the 10,000 samples. The

deterministic optimum solution is compared to the three robust solutions found with

γ = 0.2, 1, 5.

The horizontal axis shows desirability. The vertical axis shows number of sam-

ples with that particular desirability level on a logarithmic scale. The distributions

of the three robust solutions are very similar. However, the deterministic solution

tends to have fewer samples with higher desirabilities than the robust solutions have.

In this case, since the robust solutions had the highest maximum desirability and
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Figure 9. Compare the distribution of D between different values of γ and the deter-
ministic optimum when si = ti = 6)

highest average desirability, a decision maker would prefer a robust solution over the

deterministic solution regardless of risk preference.

Consider the case when si = ti = 9 (i = 1, . . . , 6). Table 20 contains the average

and maximum desirabilities calculated when using the deterministic solution shown

in Table 10 and the robust optimal solutions shown in Table 17.

Table 20. Maximum and average desirability for deterministic optimum and optimums
at γ = 0.2, 1, 5 when si = ti = 9

Deterministic γ = 0.2 γ = 1 γ = 5
E(D) 0.0004 0.0009 0.0009 0.0009

Max D 0.1350 0.1488 0.1462 0.1434

The deterministic solution produces a lower maximum desirability and lower av-

erage desirability when adding the set of 10,000 random residuals to it. The robust

solutions found at γ = 0.2, 1, 5 produce different maximum desirabilities, however the

average desirability across this set is the same.
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Figure 10 displays the distribution of desirabilities across the 10,000 samples. The

deterministic optimum solution is compared to the three robust solutions found with

γ = 0.2, 1, 5.

Figure 10. Compare the distribution of D between different values of γ and the deter-
ministic optimum when si = ti = 9)

The horizontal axis shows desirability. The vertical axis shows number of sam-

ples with that particular desirability level on a logarithmic scale. The distributions

of the three robust solutions are very similar. However, the deterministic solution

tends to have fewer samples with higher desirabilities than the robust solutions have.

In this case, since the robust solutions had the highest maximum desirability and

highest average desirability, a decision maker would prefer a robust solution over the

deterministic solution regardless of risk preference.
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V. Robust Stability Operations Policy Findings

5.1 National Operational Environment Model Experiment

To illustrate the decision analysis approach to robust optimization, a stability

operations policy optimization problem is investigated within the Air Force Research

Laboratory’s (AFRL) National Operational Environment Model (NOEM).

An experiment is designed to investigate how various diplomatic, informational,

military and economic (DIME) instruments of national power affect the Democratic

Republic of Congo’s (DRC) political, military, economic, social, infrastructure, and

information (PMESII) systems.

This experiment investigates the effect 14 DIME factors have on two PMESII

responses. Table 21 lists the factors with brief descriptions. Table 22 lists the units

and minimum and maximum values for the experimental factors.

National debt and total number of activists are the two indicators of the DRC’s

PMESII systems. Minimizing both responses is preferred and is indicative of a more

stable government.

Each design point is run for three simulated years (1095 days) with two replica-

tions. A list of random seed generators is generated in Excel and each design point

is assigned a seed from this list. NOEM outputs debt and activist data for every

simulated day. This experiment considers the arithmetic mean of the last 30 days of

the simulation’s debt and activist output as the two responses for debt and activists

respectively.
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Table 21. NOEM DRC experiment factors and descriptions

Factor Description

Diplomatic
Stimulus maximum Maximum amount of money allocated

daily to government stimulus
Stimulus Spending % Percentage of government funding ear-

marked for stimulus
Government Corruption Proportion of government income not

available for use
Military
Initial Police Forces Police forces at the start of the simulation
Police Forces Goal Long term goal for police forces
Jail Term Mean jail term for arrested activist
Mean Adjudication Processing Time Mean time spend in adjudication process
Adjudication Rate Average rate of adjudication process
Economic
Tax Rate Income and production tax rate
Interest Rate Government debt interest rate
Long Term Government Employee
Share

Long term proportion of workers em-
ployed by the government

Government Wages Mean annual wage paid to government
employees

Infrastructure Spending % Percentage of government funding ear-
marked for infrastructure

Services Spending % Percentage of government funding ear-
marked for providing services
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Table 22. NOEM DRC experiment factors, units, minimum values, maximum values

Factor Units Min Max

Diplomatic
Stimulus maximum $ 0 6,000,000
Stimulus Spending % % 0 100
Government Corruption n/a 0.05 0.15
Military
Initial Police Forces personnel 52,500 137,500
Police Forces Goal personnel 112,500 187,500
Jail Term days 3 100
Mean Adjudication Processing Time day 0.1 0.9
Adjudication Rate per day 0.01 0.13
Economic
Tax Rate n/a 0.03 0.5
Interest Rate n/a 0.0225 0.0675
Long Term Government Employee
Share

n/a 0.001 0.05

Government Wages $ 1400 4200
Infrastructure Spending % % 0 100
Services Spending % % 0 100

The experiment executes a D-optimal design. D-optimality focuses on good model

coefficient estimation. It does this by choosing design points so that the determinant

of the moment matrix M is maximized [32].

|M | = |X
′X|
Np

(5.1)

where X is the design matrix, N is the number of experiment runs and p is the

number of parameters [32]. An experimental design consisting of 139 design points

with two replicates each is chosen to create a full quadratic model with cubic terms.

A deterministic value function, V , is formulated to describe the preferred rela-

tionship between the two responses.

V = 18.164− 5.75× 10−10y1 − 1.01× 10−4y2, (5.2)
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where y1 is debt in dollars, and y2 is the number of activists.

t(y2, y1) =
V ′y2
V ′y1

= 176, 439.50 (5.3)

The value function V is describing a tradeoff where the decision maker would be

willing to increase the debt by $176,439.50 in order to reduce activists by one.

This particular form of a value function assumes a constant trade-off between the

two responses throughout the entire response space. Consider two examples, one with

$3 billion of debt and 500 activists, and a second with $3 billion of debt and 50,000

activists. It is unlikely a decision maker would have the same tradeoff between debt

and number of activists in these two cases. Given $3 billion of debt, a decision maker

would more likely have a higher tradeoff when faced with 50,000 activists as opposed

to when faced with 500 activists. Moreover, given a particular number of activists, a

decision maker would more likely have a decreasing tradeoff as debt increases.

Consider an exponential utility function assessed over V

U =


1 + e−γV , γ < 0

V, γ = 0 .

1− e−γV , γ > 0

(5.4)

After assessing a utility function over value, the risk aversion with respect to the

two attributes can be calculated. The objective in this experiment is to maximize V

which minimizes y1 and y2. Since this is a decreasing value function, the risk aversion

functions with respect to these attributes change some of the signs in Equations 2.11

and 2.10.
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γVyi = −
V ′′yi
V ′yi

, i = 1, 2 (5.5)

γUyi = −γUV V ′yi + γVyi , i = 1, 2 (5.6)

This value function is additive, so its contribution to risk aversion is zero.

γVyi = 0, i = 1, 2 (5.7)

The risk aversion of the utility function with respect to the two attributes are

γUy1 = 5.75× 10−10γ and (5.8)

γUy2 = 1.01× 10−4γ. (5.9)

In cases where constant risk aversion is indicated by the utility function, one must

be cognizant of saturation effect. The utility function, U = 1 − e−γV , equals one as

V approaches positive utility. When V is greater than ≈ 1/γ, the utility function is

nearly a horizontal line. This saturation effect improperly models risk preference at

these higher levels of V . This limitation of the exponential utility function must be

considered when selecting reasonable values of γ.

5.2 Experiment Results

After the experiment is run, the data is analyzed in Design-Expert. Ordinary

least squares (OLS) regression is applied and two regression equations to predict y1

and y2 are developed.
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The model for y1 did not pass the lack-of-fit test. However the R-Squared, adjusted

R-Squared and predicted R-Squared measures are all high so this model is accepted.

After a natural log transform is applied to the y2 response this model does pass the

lack-of-fit test. Its R-Squared, adjusted R-Squared and predicted R-Squared are also

high. These results are displayed in Table 23. The coefficients for these two functions

appear in Appendix D.

Table 23. Statistics for the two regression equations

y1 ln y2
R-Squared 0.9882 0.9920

Adj R-Squared 0.9773 0.9847
Pred R-Squared 0.9631 0.9686

5.3 Deterministic optimum setting

The Hooke-Jeeves (HJ) algorithm finds the maximum value and corresponding op-

erating solution. One thousand random starting points within the experimental region

are generated using the uniform psuedo-random number generator in Microsoft Excel

Visual Basic for Applications (VBA). This procedure produces 657 local maxima.

The set of local maxima is reduced using a K means clustering algorithm with

Matlab’s kmeans function. This algorithm classifies the 657 points into K groups by

minimizing the sum of squares of Euclidean distances between the points and their

corresponding cluster centroid [30].

To find the proper number of clusters K, K is chosen to vary between 2 and 50

and the total sum of squared distances in each case is graphed against K to find a

point where the trade-off between the sum and K is balanced. Figure 11 displays this

graph.

Based on this chart, 13 clusters are chosen which gives a total sum of squared

distances of 788.05. The maximum value point from each cluster is chosen to represent
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Figure 11. Total Sum of Squared Distances in all K clusters by K

its cluster as a starting point for the Monte Carlo simulation. These points are

displayed in Table 24.
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5.4 Monte Carlo Simulation

The residuals from the regression equations are used to estimate the marginal

distribution functions for the two responses. Appendix D contains the residuals for

this regression model. The lower bound A for each response’s Beta distribution is

chosen by rounding its lowest residual down to the next integer value. The upper

bound B for each response is chosen by rounding its highest residual up to the next

integer value. Using these bounds, the α and β parameters are estimated using

Matlab’s fminsearch function. Table 25 contains the estimated parameters of the two

marginal Beta distribution functions.

Table 25. Estimated parameters for the marginal Beta distribution functions

Residual Residual
y1 ln y2

α 17.7591 255.1359
β 7.9396 255.7977
A -4.422E+09 -3
B 6.389E+09 6

The correlation matrix R is calculated from the residuals as shown in Table 26.

Table 26. Correlation matrix of the residuals

1 -0.1912
-0.1912 1

Using Matlab’s mvnrnd function and the normal multivariate copula method, a

set of 10,000 sample residuals are constructed for the Monte Carlo simulation. To

confirm this random sample is from the intended distribution, the Beta distribution

parameter estimates and correlation matrix of the sample is calculated for comparison

with the residual data estimates. Table 27 contains the Beta parameters fit to the

sample.
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Table 27. Beta distribution parameters fit to the Monte Carlo samples

Residual Residual
y1 ln y2

α 18.0711 260.9499
β 8.0698 261.6797

Table 28 contains the correlation matrix of the random sample. Both the parame-

ters from the two marginal distributions and the correlation matrix from the random

sample appear to resemble those calculated from the residuals.

Table 28. Correlation matrix for the Monte Carlo samples

1 -0.1833
-0.1833 1

The Monte Carlo simulation is run using the random sample. In this model, the

regression equation for y2 contains a natural log transformation on the response. The

random sample is not simply added to the responses. The Monte Carlo simulation

allows one to compute the expected utility for a particular vector x. Any point, x∗

gives an expected utility,

n∑
i=1

(
1

n
UV
(
V
(
f1(x∗) + ε1i, e

ln(f2(x∗))+ε2i
)))

(5.10)

where fi(x∗) is the expected response yi given an input of x∗ (i = 1, 2), n is the

number of random samples used in the Monte Carlo simulation, ε1i and ε2i are the i-th

random samples from the distributions of the residuals for y1 and y2 respectively, V is

the multiattribute value function, and UV is the utility function assessed over value.

The optimization problem is to then choose a point x∗ that maximizes expected

utility.

The HJ algorithm is started at each local maxima displayed in Table 24. Risk

preferences are modeled by varying γ in the appropriate utility function in Equation
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5.4. Table 29 contains the levels of γ chosen and the corresponding risk preference

with respect to y1 and y2.

Table 29. Levels of γ sampled in Monte Carlo simulation

γ γU
y1

γU
y2

-0.01 -5.751E-12 -1.015E-06
0 0 0

0.01 5.751E-12 1.015E-06
0.02 1.150E-11 2.030E-06

Table 30 displays the robust solutions found when γ = −0.01, 0, 0.01, 0.02 along-

side the deterministic solution. The robust solutions when γ = 0, 0.01, 0.02 are equal.

They differ slightly from the deterministic solution and the robust solution when risk

seeking behavior is modeled (γ = −0.01).

Table 30. Compare deterministic solution with robust solutions for γ = −0.01, 0, 0.01, 0.02

Deterministic Robust Solutions
Solution γ =

−0.01 0,0.01,0.02
x1 0.9 0.9 0.9
x2 100 100 100
x3 0.05 0.05 0.05
x4 0.0675 0.0675 0.0675
x5 165481 165473 165473
x6 0.47811 0.47814 0.47806
x7 0.13 0.13 0.13
x8 100 100 100
x9 4188.76 4188.84 4188.84
x10 0 0 0
x11 0.14081 0.14081 0.14081
x12 52500 52500 52500
x13 87 87 87
x14 0 0 0
E(V ) 15.8259 15.8259 15.8259

This case illustrates a limitation in this method of finding a robust optimum

solution. The methodology assumes constant variance in the response noise over

the experimental region. The Monte Carlo simulation inputs noise to the responses,
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y1, . . . , yn, and calculates a robust solution by examining how this noise affects the

multiattribute value function. To illustrate this, consider the example robust solution

in Chapter 2, redisplayed in Figure 12.

B 

A A 

B 

x1 x2 x1 + r x1 - r x2 + r x2 - r 

y’2 

y2 

y1 y’1 

Figure 12. Illustration of Robust Solution [16]

Here, the horizontal axis represents the responses (y1, . . . , yn) and the vertical axis

represents V (y1, . . . , yn). By properly specifying the decision maker’s risk preference

in the utility function UV (V (y1, . . . , yn)), the proper robust solution can be found.

This method is dependent on the form of the value function in use. The value

function illustrated in Figure 12 has curvature present. The value function used in

this situation is an additive value function. It exhibits no curvature. Therefore this

method will choose a robust solution at or near the optimum.

These three points are input into NOEM with 10 replicates run for each point to

test the prediction of these optimum solutions. Table 31 contains the expected values

and 95% confidence intervals for these three points.
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Table 31. Average V and 95% confidence intervals from 10 replicates in NOEM for the
three optimum points

Robust Solution γ =
Deterministic −0.01 0,0.01,0.02

E(V) 0.6577 0.7156 0.1472
95% Conf Int [0.5837, 0.7316] [0.6073, 0.8238] [-0.1963, 0.4907]

The expected values (E(V )) displayed in Table 30 do not fall within the 95%

confidence intervals found by running these points in NOEM. This is most likely due

to no design point from the experiment lies near these calculated optima. A space-

filling design such as a Latin hypercube design may present better results due to the

experiment design points being more uniformly spread throughout the experimen-

tal region. Augmenting this D-optimal design with additional runs may also have

presented a better model of the response surface. Moreover, a Kriging model of the

system would most likely have described the surface better than a regression model.

A Kriging model makes no assumption about the form of the underlying system re-

sponse. Moreover, applications of Kriging models exist that model either variance

homogeneity or variance heterogeneity [26].
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VI. Summary, Conclusions and Recommendations

Decisions considering a set of multiple objectives occur everyday in government,

military, and industrial settings. After understanding the decision maker’s preferences

regarding the trade-offs between the objectives and risk attitude, a utility function

can be constructed to provide insight to the decision maker regarding such a decision.

When the decision situation concerns a system containing multiple inputs and

outputs, response surface methodology provides a means to model the system with

a set of equations. This set of equations can be used to inform the determination of

value and utility functions that best describe the decision situation.

Many systems contain noise that effect the system outputs. In these cases, the

best solution may not be simply the solution with the optimum expected output.

The best solution may be in an operating location where the output varies less in the

presence of noise. Depending on the form of the value function, this robust solution

can be modeled and found by properly describing the risk attitude of the decision

maker in a Monte Carlo simulation.

The desirability function has emerged as a popular method of scalarizing a multiple

response optimization problem. It is a powerful function when the parameters are

chosen properly to describe the decision maker’s preferences.

In the case of the maximum is better desirability function, the lower bounds and

target levels of the responses must be carefully chosen. A lower bound that is too high

may eliminate desirable solutions. A target level that is too low may value multiple

responses equally when one is more desirable.

When the desirability function is treated as a value function, the deterministic

trade-offs described between responses are dependent upon the responses and their

corresponding exponents and lower bounds. Trade-offs are not constant as Kros and
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Mastrangelo calculated [29]. Once the lower bounds and targets are set, the exponents

can be adjusted to properly describe the decision maker’s trade-off preferences.

When a utility function is assessed over desirability, the risk preferences described

depend on the form of the utility function. In the case of an exponential utility

function, the risk preference with respect to the responses depends on the responses

and their respective lower bounds, target levels, and desirability function exponents.

Adjusting the lower bound or exponent has a non-monotonic effect on risk preference

and must be adjusted carefully.

When the desirability function is treated as a utility function, there exists an im-

plicit assumption of utility independence between all responses. The risk preference

with respect to each response depends on the response, its exponent, and lower bound.

The desirability function can describe risk averse, risk neutral, and risk seeking be-

havior depending on whether the exponent is less than, equal to, or greater than the

number of responses. This is in contrast to Kros and Mastrangelo stating the risk

preference described by the desirability function depends on whether the exponent is

less than, equal to, or greater than one [29].

A decision analysis method of calculating a robust optimum solution using a utility

function assigned over a value function in a Monte Carlo simulation is applied to a

wire-bonding process experiment from the quality and reliability engineering design

literature and to a national policy-making scenario within NOEM.

The usefulness of this method depends on the form of the value function. Since

random noise is assumed to be constant throughout the experimental region, certain

value functions (e.g., an additive value function) are affected uniformly by this random

noise. When the value function exhibits curvature (e.g., the desirability function),

the effect noise has on the variance in the value function can be measured and a
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robust optimum solution can be found that is affected by changing the risk preference

described by the utility function.

Additional research in this area includes analyzing other multiple response opti-

mization functions. Any multiple response optimization function makes implicit and

explicit assumptions regarding the decision maker’s preferences. These assumptions

should be properly analyzed so that the decision maker can make informed decisions.

The methodology presented for finding a robust optimum solution presented in

this thesis provides insight in only certain forms of the value function. It does not

provide additional insight about robustness when an additive value function is used.

It can provide insight into a situation when a desirability function is used as the value

function. Applying this method across a larger set of value functions should provide

a fuller understanding about the types of functions for which this method provides

insight about robustness.

The methodology presented here assumes random noise with constant variance

throughout the experimental region. Further research can include modeling hetero-

geneous variance and applying a dynamic random sample that changes relative to

the variance modeled at the current point in the experimental region within a Monte

Carlo simulation.

The Kriging method can also estimate the response surface assuming either ho-

mogeneous or heterogeneous variance within the system. Further research includes

how best to construct a Monte Carlo simulation that models the variance assumed in

a Kriging model of the system.

In the current culture of constrained budgets, decision makers are faced more than

ever with making decisions that encompass multiple, competing objectives. A method

that properly describes the decision maker’s preferences regarding risk and the trade-

offs between the objectives at hand while also taking uncertainty into account will
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serve to provide useful insight into the decision at hand. With that insight, the

decision maker can proceed with confidence that he or she has made the best decision

given current information.
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Appendix A. Desirability function analysis in n-dimensions

Consider the desirability function in n-dimensions.

D = (d1 · · · dn)
1
n (A.1)

Consider a system with m inputs, (x1, . . . , xm). Each input, xi falls within the

experimental region defined by xi ∈ [x0i , x
∗
i ], i = 1, . . . ,m. These inputs cause changes

in two responses, y1 and y2 which each fall within the range, yi ∈ [y0i , y
∗
i ], i = 1, . . . , n.

This analysis focuses on the case where a maximum response is desired as displayed

in Equation 2.21 with no loss of generality since the other forms of the desirability

function can be transformed into this case. Only the non-trivial piece of Equation 2.21

where Li < yi < Ti, i = 1, . . . , n is considered. Equation A.2 displays this non-trivial

piece.

di =

[
yi − Li
Ti − Li

]ri
, Li < yi < Ti (A.2)

Where [Li, Ti] ⊆ [y0i , y
∗
i ], i = 1, . . . , n. This forces 0 < D < 1.

The partial derivative of D with respect to yi, (1 ≤ i ≤ n) is

D′yi =
ri

n(Ti − Li)

[
y1 − L1

T1 − L1

] r1
n

· · ·
[
yi − Li
Ti − Li

] ri
n
−1

· · ·
[
yn − Ln
Tn − Ln

] rn
n

(A.3)

The tradeoff function between yi and yj (i 6= j) is defined as

t(yi, yj) =
D′yi
D′yj

= −dy
dx
|isopreference contour. (A.4)
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The deterministic tradeoffs between the two attributes can then be stated.

t(yi, yj) =
ri
rj

[
yj − Lj
yi − Li

]
(A.5)

Consider assessing an exponential utility function over D.

U = 1− e−γD (A.6)

The risk aversion of the utility function with respect to yi (1 ≤ i ≤ n) is

γUyi = γUDD
′
yi

+ γDyi . (A.7)

The risk aversion for the utility function with respect to the desirability function

is simply

γUD = γ. (A.8)

The contribution of the desirability function to the risk aversion of the attribute

yi is

γDyi =
1− ri

n

yi − Li
. (A.9)

The risk aversion expressed by this utility function with respect to yi is

γUyi =
γri

n(yi − Li)

[
y1 − L1

T1 − L1

] r1
n

· · ·
[
yi − Li
Ti − Li

] ri
n

· · ·
[
yn − Ln
Tn − Ln

] rn
n

+
1− ri

n

yi − Li
. (A.10)
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Appendix B. Data from del Castillo example

Table 32. Data table from wire bonding experiment [9]

x1 x2 x3 y1 y2 y3 y4 y5 y6
Flow Flow Block Max Begin Finish Max Begin Finish

n Rate Temp Temp Temp A Bond A Bond A Temp B Bond B Bond B
1 40 200 250 139 103 110 110 113 126
2 120 200 250 140 125 126 117 114 131
3 40 450 250 184 151 133 147 140 147
4 120 450 250 210 176 169 199 169 171
5 40 325 150 182 130 122 134 118 115
6 120 325 150 170 130 122 134 118 115
7 40 325 350 175 151 153 143 146 164
8 120 325 350 180 152 154 152 150 171
9 80 200 150 132 108 103 111 101 101
10 80 450 150 206 143 138 176 141 135
11 80 200 350 183 141 157 131 139 160
12 80 450 350 181 180 184 192 175 190
13 80 325 250 172 135 133 155 138 145
14 80 325 250 190 149 145 161 141 149
15 80 325 250 180 141 139 158 140 148
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Table 33. Residuals from del Castillo example experiment

Residual Residual Residual Residual Residual Residual
n y1 y2 y3 y4 y5 y6
1 -12.558 -10.375 -6.575 -4.125 -3.5 -1.125
2 -11.558 -0.375 -3.825 8.375 3 4.375
3 -14.308 -5.625 -15.575 -5.875 -2 -1.875
4 11.692 7.375 7.175 6.625 4.5 3.625
5 10.692 9.125 9.8 8.375 5.25 4.375
6 -1.308 -2.875 -3.45 -8.625 -3.25 -4.625
7 -3.558 1.875 0.05 1.625 0.25 -1.375
8 1.442 -9.125 -12.2 -6.375 -4.25 -3.375
9 3.067 2.75 0.175 -5.357 -2.036 -2.857
10 -7.683 -5.5 3.175 -1.607 -1.536 -0.107
11 8.817 7.5 13.425 -1.107 2.964 1.393
12 -1.933 3.25 8.425 -1.357 -0.536 0.143
13 -2.933 -6 -6.2 0.143 -1.286 -1.857
14 15.067 8 5.8 6.143 1.714 2.143
15 5.067 0 -0.2 3.143 0.714 1.143
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Appendix C. Feasible Region of del Castillo experiment

Figure 13. Value of D as Block Temp and Flow Temp vary (Flow Rate = 120)
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Figure 14. Value of D as Block Temp and Flow Temp vary (Flow Rate = 82.19)

Figure 15. Value of D as Flow Temp and Flow Rate vary (Block Temp = 320.30)
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Figure 16. Value of D as Flow Temp and Flow Rate vary (Block Temp = 330.45)
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Appendix D. Regression equation coefficients and residuals

for NOEM experiment

Table 34. Coefficients for predicted Debt (ŷ1)

Coefficient

Factor Estimate

Intercept -1.2E+11

A-Adjud Proc Time -1E+10

B-Infra Spend -9.5E+07

C-Govt Employ -5.2E+10

D-Interest Rate -5.2E+11

E-Police Goal 2223638

F -Tax Rate 1.88E+10

G-Adjud Rate 2.41E+11

H-Stimulus Pct 3.01E+08

J-Govt Wage 34007472

K-Service Spend 52747611

L-Corrupt Pct 5.39E+11

M -Police Init 485203.9

N -Jail Term 1.7E+08

O-Stimulus 2870.185

AB -1.4E+07

AC -5.7E+10

AD 1.21E+10

AE 34766.79

AF -5.8E+09

Continued on next page.
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Table 34. (Debt model coefficients continued)

Coefficient

Factor Estimate

AG -4.4E+10

AH -3.5E+07

AJ 292440.8

AK 30246284

AL 1.04E+09

AM 9606.421

AN -2E+07

AO 276.1704

BC -5.2E+08

BD -7.7E+08

BE 300.0216

BF 35535699

BG -6.3E+07

BH -205478

BJ -12612

BK -124684

BL -1.3E+08

BM 277.5306

BN 91005.42

BO -1.04642

CD -1.2E+12

CE 578785.7

Continued on next page.
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Table 34. (Debt model coefficients continued)

Coefficient

Factor Estimate

CF 1.22E+11

CG 6.9E+10

CH -5.7E+08

CJ 20315991

CK -9.3E+08

CL -1.1E+12

CM 894714.9

CN 9.66E+08

CO 14794.99

DE -581941

DF 3.29E+10

DG -7.8E+11

DH -8E+08

DJ 15254317

DK -7.7E+08

DL -3.3E+11

DM 520396.9

DN 1.44E+08

DO 5747.516

EF -61603

EG -286008

EH -255.663

Continued on next page.
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Table 34. (Debt model coefficients continued)

Coefficient

Factor Estimate

EJ 9.591571

EK 267.4753

EL -74454

EM -0.08278

EN -231.426

EO 0.003944

FG -5.3E+10

FH -3.5E+07

FJ -495916

FK 1.17E+08

FL -7.5E+10

FM 10285.56

FN 22431989

FO 1334.28

GH 1.35E+08

GJ -7219620

GK -1.8E+08

GL 7.95E+10

GM 176310

GN -5222336

GO 2426.442

HJ -14446.1

Continued on next page.
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Table 34. (Debt model coefficients continued)

Coefficient

Factor Estimate

HK -177820

HL -6.3E+08

HM 287.7633

HN -365415

HO 13.19157

JK 2268.709

JL -6658941

JM -2.26307

JN -1152.77

JO 0.126152

KL -2E+08

KM 190.0535

KN 65779.41

KO -5.14335

LM -129731

LN -6E+07

LO -2756.72

MN 285.4206

MO -0.00252

NO 3.376809

A2 3.2E+10

B2 3978377

Continued on next page.
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Table 34. (Debt model coefficients continued)

Coefficient

Factor Estimate

C2 2.2E+11

D2 2.02E+13

E2 -16.731

F 2 -1.4E+11

G2 -2.5E+12

H2 -285702

J2 -12046.9

K2 -828766

L2 -5.4E+12

M2 -5.3217

N2 -4390076

O2 -0.00124

A3 -2.6E+10

B3 -27719.5

C3 3.87E+12

D3 -1.6E+14

E3 4.06E-05

F 3 2.04E+11

G3 1.2E+13

H3 -6288.01

J3 1.29533

K3 6608.289

Continued on next page.
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Table 34. (Debt model coefficients continued)

Coefficient

Factor Estimate

L3 1.95E+13

M3 1.51E-05

N3 26475.31

O3 8.38E-11

Table 35. Coefficients for predicted activists (ln ŷ2)

Coefficient

Factor Estimate

Intercept 39.655

A-Adjud Proc Time 1.762

B-Infra Spend 0.054

C-Govt Employ -141.256

D-Interest Rate -97.080

E-Police Goal -0.001

F -Tax Rate 3.105

G-Adjud Rate -73.038

H-Stimulus Pct -0.020

J-Govt Wage -0.002

K-Service Spend -0.009

L-Corrupt Pct 320.777

M -Police Init 9.50E-06

Continued on next page.
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Table 35. (Activist model coefficients continued)

Coefficient

Factor Estimate

N -Jail Term -0.091

O-Stimulus -6.10E-07

AB -0.002

AC 12.913

AD -1.894

AE -7.71E-06

AF 0.151

AG -4.845

AH 0.002

AJ 8.75E-05

AK 0.007

AL 1.518

AM 5.64E-06

AN 0.003

AO -2.59E-08

BC 0.039

BD 0.035

BE 7.29E-09

BF -0.005

BG 0.029

BH -3.30E-06

BJ 1.39E-07

Continued on next page.
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Table 35. (Activist model coefficients continued)

Coefficient

Factor Estimate

BK 1.39E-06

BL 0.013

BM -4.98E-08

BN -6.05E-06

BO -1.71E-10

CD -168.524

CE -1.44E-04

CF -16.719

CG 46.315

CH 0.065

CJ -0.002

CK 0.106

CL 192.671

CM 6.72E-05

CN 0.054

CO -8.55E-07

DE 9.77E-05

DF -34.473

DG -81.507

DH -0.030

DJ 0.008

DK -0.067

Continued on next page.
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Table 35. (Activist model coefficients continued)

Coefficient

Factor Estimate

DL -60.734

DM -4.83E-05

DN -0.001

DO -9.20E-07

EF 1.98E-05

EG 2.05E-05

EH -5.40E-08

EJ -7.05E-11

EK -5.09E-08

EL 5.38E-05

EM 7.64E-11

EN -6.25E-08

EO 5.96E-13

FG -0.475

FH 0.006

FJ -0.001

FK 0.002

FL -0.111

FM 7.26E-06

FN -0.008

FO -6.60E-09

GH -0.026

Continued on next page.

88



Table 35. (Activist model coefficients continued)

Coefficient

Factor Estimate

GJ -0.001

GK 0.013

GL 0.190

GM 2.37E-05

GN 0.024

GO 4.19E-08

HJ -1.26E-06

HK 1.38E-05

HL 0.046

HM 4.55E-08

HN 5.80E-05

HO 5.04E-10

JK -1.34E-06

JL -3.17E-04

JM 6.59E-10

JN 9.41E-07

JO 8.55E-13

KL 0.076

KM -4.62E-08

KN 6.84E-05

KO 1.08E-10

LM 5.68E-05

Continued on next page.
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Table 35. (Activist model coefficients continued)

Coefficient

Factor Estimate

LN 0.058

LO 7.64E-07

MN -1.84E-08

MO -8.70E-13

NO 7.54E-10

A2 -7.008

B2 -0.001

C2 7228.526

D2 2707.111

E2 4.72E-09

F 2 -10.416

G2 1169.703

H2 8.40E-05

J2 7.16E-07

K2 5.42E-05

L2 -2686.560

M2 -1.95E-10

N2 0.001

O2 1.84E-13

A3 5.351

B3 6.73E-06

C3 -94855.894

Continued on next page.
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Table 35. (Activist model coefficients continued)

Coefficient

Factor Estimate

D3 -21722.951

E3 -9.94E-15

F 3 11.252

G3 -4959.153

H3 5.56E-07

J3 -7.44E-11

K3 -2.09E-07

L3 7234.906

M3 1.87E-16

N3 -5.68E-06

O3 -1.70E-20

Table 36. Residuals from NOEM experiment

Residual Residual

n y1 ln y2

1 6.05E+08 0.01470

2 46501523 0.04140

3 -1.4E+08 -2.26903

4 -5.2E+08 0.02669

5 17163091 0.00104

6 2.93E+08 0.00221

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

7 6.07E+08 -0.03120

8 -2.1E+08 0.01059

9 -6.3E+07 -0.00359

10 -5.9E+08 -0.00723

11 -8.6E+08 -0.03596

12 5.91E+08 0.12739

13 3.27E+08 -0.00834

14 -4.7E+08 0.05884

15 -8.1E+08 0.04631

16 78070523 -0.00677

17 4.12E+08 0.02850

18 1.1E+08 0.00031

19 6.28E+08 -0.09888

20 3.9E+08 -0.03841

21 7.14E+08 -0.22464

22 -3.1E+08 -0.11321

23 -3E+08 0.01299

24 3.59E+08 -0.02980

25 -5.1E+08 0.05644

26 -8.7E+08 0.06156

27 5.54E+08 0.14357

28 -1.7E+08 0.01179

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

29 1.57E+08 0.00506

30 -6.1E+08 0.19792

31 60858431 -0.07986

32 -6.9E+08 -0.09111

33 4.65E+08 -0.16477

34 2.89E+08 -0.00784

35 2.45E+08 -0.02627

36 1.06E+08 0.00367

37 4.94E+08 -0.03780

38 -1.6E+07 -0.09847

39 -2.6E+08 0.11083

40 -1.9E+08 0.16481

41 -8.9E+07 -0.01404

42 -3.4E+08 0.02320

43 -5.5E+08 -0.03663

44 -2.5E+08 0.09646

45 14818895 -0.05011

46 -2.2E+08 -0.02335

47 8.54E+08 0.09151

48 1.62E+08 -0.00864

49 -1.4E+08 0.00599

50 1.95E+08 -0.03013

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

51 -6E+08 -0.06399

52 7.77E+08 -0.06574

53 -3.6E+08 0.00710

54 -7.7E+08 0.05698

55 -68764.7 0.00169

56 -6.6E+08 0.04321

57 1.07E+08 -0.03385

58 -2.7E+08 0.01978

59 1.89E+09 -0.14355

60 -4.5E+08 0.03494

61 -5.3E+08 0.00734

62 2.85E+08 -0.04153

63 6.09E+08 -0.03008

64 -4.2E+08 0.01458

65 1E+09 -0.14547

66 -4.4E+09 0.23652

67 -3.9E+08 0.02111

68 1.42E+08 -0.04746

69 7.52E+08 -0.01527

70 4.48E+08 -0.14286

71 5.77E+08 -0.07107

72 2424187 0.00200

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

73 -3.2E+07 0.00180

74 2.4E+08 -0.01881

75 -2.6E+07 -0.01237

76 1.91E+08 0.24609

77 1.26E+09 -0.07518

78 -5E+08 0.04178

79 -1.3E+08 0.05549

80 7.76E+08 -0.03767

81 2.86E+08 0.08801

82 8.21E+08 -0.07016

83 -2.2E+08 -0.00163

84 3.11E+08 -0.04712

85 2.03E+08 -0.00505

86 -3.6E+08 0.01480

87 4.66E+08 -0.09495

88 -3.8E+08 0.09892

89 5.65E+08 -0.12924

90 -2.3E+08 0.01413

91 -7.2E+07 0.00131

92 1.1E+09 -0.06148

93 -7.7E+08 0.04685

94 1.87E+08 -0.01776

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

95 24635434 0.00560

96 -5.5E+08 0.03593

97 -2.3E+08 0.02691

98 -4.1E+08 0.01791

99 -5.2E+08 0.03291

100 1.09E+09 -0.06534

101 -2.7E+07 0.17692

102 -6.9E+08 0.13842

103 -1.1E+08 0.10242

104 -1.3E+07 -0.09554

105 74725502 -0.01007

106 -9E+08 0.05072

107 -8.6E+07 0.00804

108 7.68E+08 -0.04576

109 77373775 -0.00131

110 -6.2E+08 0.08858

111 4.61E+08 -0.02004

112 2.87E+08 -0.03326

113 5.75E+08 -0.23979

114 -4.3E+08 0.01492

115 20782539 0.09571

116 20906907 -0.07693

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

117 6.44E+08 -0.02522

118 3.28E+08 -0.01519

119 1.39E+08 0.11427

120 -2.3E+08 -0.06090

121 1.02E+09 0.04245

122 -7E+08 0.14105

123 -1.6E+08 -0.00421

124 21789422 0.00127

125 -6.1E+08 0.03328

126 -2.2E+08 -0.00190

127 88528846 -0.00964

128 82073456 -0.02887

129 -5.4E+08 0.00532

130 -7.4E+08 0.04756

131 88697026 -0.01250

132 -7.8E+08 0.07467

133 -9.4E+07 -0.18327

134 -5.2E+08 -0.00225

135 5.25E+08 0.00848

136 3.65E+08 0.00283

137 3.14E+08 -0.04048

138 6.33E+08 -0.04005

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

139 2.58E+08 -0.00268

140 6.45E+08 -0.09468

141 4.89E+08 -0.06711

142 -3.1E+08 2.29606

143 -5.2E+08 0.02387

144 11918414 -0.00055

145 2.85E+08 -0.04482

146 6.06E+08 -0.03489

147 -2E+08 0.01573

148 -7.4E+07 0.01549

149 -5.9E+08 0.07362

150 63301594 0.08141

151 8.05E+08 -0.21154

152 3.28E+08 -0.00924

153 -5.3E+08 -0.02777

154 -8.1E+08 0.04623

155 84505897 -0.00937

156 4.07E+08 -0.07991

157 1.06E+08 -0.01242

158 6.27E+08 0.04279

159 3.99E+08 0.01167

160 6.79E+08 0.15372

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

161 -3.5E+08 0.13814

162 -3E+08 0.02363

163 3.6E+08 -0.01006

164 -5.2E+08 0.01254

165 -8.8E+08 0.04320

166 5.77E+08 -0.19703

167 -2.2E+08 0.01890

168 1.68E+08 -0.03330

169 -5.9E+08 -0.12573

170 64175139 0.07030

171 -6.9E+08 0.17001

172 4.65E+08 0.11906

173 3.02E+08 -0.02906

174 2.46E+08 0.00041

175 1.09E+08 -0.01239

176 6.07E+08 -0.02233

177 -2.3E+07 -0.11000

178 -2.6E+08 0.12963

179 -1.9E+08 -0.15507

180 -8.9E+07 0.01462

181 -3.5E+08 0.00679

182 -5.5E+08 0.10022

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

183 -2.6E+08 -0.05576

184 14569111 0.05139

185 -2.2E+08 0.04875

186 1.03E+09 -0.20512

187 1.98E+08 -0.01911

188 -1.3E+08 0.00501

189 1.86E+08 0.00298

190 -1E+09 0.16006

191 6.57E+08 -0.02194

192 -1.6E+08 0.01964

193 -7.7E+08 0.03657

194 -1561419 0.00145

195 -4.4E+08 0.02101

196 1.2E+08 0.01994

197 -3E+08 0.01753

198 1.97E+09 -0.13089

199 -4.5E+08 0.01859

200 -6E+08 0.06112

201 1.21E+08 0.03122

202 5.93E+08 -0.02883

203 -4.9E+08 0.04262

204 9.95E+08 0.04702

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

205 -4.4E+09 0.23771

206 -3.6E+08 0.02866

207 1.85E+08 0.04997

208 7.1E+08 -0.06078

209 4.4E+08 0.08851

210 5.66E+08 0.00929

211 -1.7E+07 0.00199

212 -7.9E+07 0.00215

213 2.58E+08 -0.01779

214 -3E+07 -0.00057

215 1.86E+08 -0.27432

216 1.28E+09 -0.07517

217 -5.4E+08 0.02574

218 37521805 -0.05756

219 7.48E+08 -0.03814

220 2.94E+08 -0.10614

221 8.27E+08 -0.02067

222 -2.2E+08 0.02649

223 3.09E+08 -0.00408

224 1.92E+08 -0.00951

225 -2.7E+08 0.01268

226 4.97E+08 0.04459

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

227 -3.2E+08 -0.04864

228 59462511 0.09071

229 -6.5E+07 -0.01050

230 -1.4E+08 0.01054

231 1.14E+09 -0.06252

232 -8.5E+08 0.04684

233 1.94E+08 0.00299

234 -1.2E+08 -0.00682

235 -5.5E+08 0.01613

236 -2.8E+08 -0.00165

237 -5.5E+08 0.04358

238 -5.1E+08 0.03270

239 1.09E+09 -0.06537

240 5.74E+08 -0.20988

241 -6.9E+08 -0.06992

242 -5.7E+07 -0.08715

243 -6.1E+08 0.13442

244 1.34E+08 -0.00347

245 -9E+08 0.05345

246 -8.4E+07 0.00772

247 7.62E+08 -0.04690

248 891461.7 -0.00482

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

249 -6.5E+08 -0.01392

250 3.75E+08 -0.02906

251 2.66E+08 0.00046

252 5.86E+08 0.17459

253 -4.3E+08 0.03501

254 20776848 0.05542

255 20998168 -0.07753

256 6.51E+08 -0.03974

257 3.28E+08 -0.00574

258 1.77E+08 -0.12397

259 -2.4E+08 0.08025

260 1.06E+09 -0.15035

261 -6.4E+08 -0.05990

262 -2.5E+08 0.02545

263 16457326 -0.00119

264 -5.5E+08 0.02066

265 -2.3E+08 0.04429

266 -6.4E+07 -0.00435

267 1.44E+08 0.01031

268 -5.4E+08 0.06502

269 -7.4E+08 0.02541

270 82312932 0.00280

Continued on next page.
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Table 36. (Residuals continued)

Residual Residual

n y1 ln y2

271 -7.8E+08 0.01035

272 -2.1E+08 0.19584

273 -5.2E+08 0.06252

274 5.24E+08 -0.07190

275 3.56E+08 -0.03884

276 3.34E+08 -0.00970

277 6.4E+08 -0.03549

278 2.06E+08 -0.01601
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Appendix E. Quad Chart

Introduction 

 Decisions in which multiple objectives must 

be optimized simultaneously occur frequently in 

government, military, and industrial settings.  

The desirability function is a tool available to 

assist the decision maker in a multiple 

response optimization situation.  Correctly 

specifying the decision maker’s preferences 

with respect to risk attitude and trade-offs 

between the objectives is essential to modeling 

the decision situation properly. 

 In certain cases, noise exists within a 

system that affects response variability.  A 

robust solution accounts for expected response 

as well as variance.  Proper specification of the 

decision maker’s risk preference while 

modeling this noise produces a robust optimal 

solution consistent with those preferences. 
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Future Research 
 

• Analyze other multiple response 

optimization functions from decision 

analysis perspective 

 

•Model heterogeneous response variance 

within the system and apply a dynamic 

Monte Carlo simulation to identify multiple 

response robust solution 

 

• Explore use of Kriging method to model 

expected response and heterogeneous 

variance within the system 
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Research Objectives 
 

 Analyze desirability function from decision 

analysis perspective to clarify assumptions 

inherent to this function 

 Explore multiple response robust optimization 

problem through Monte Carlo simulation and 

modeling decision maker’s risk preference 

with utility assessed over multi-attribute value 

function 

Robust Optimization Method 

• Estimate system model equations 

• Assess multi-attribute value function 

• Find deterministic local optima 

• Run Monte Carlo simulation estimating 

marginal distributions and correlation of the 

random noise from residual data 

   

Multiple Response 

Robust Optimization 

Desirability function analysis 

results overview 

• Choosing lower and upper bounds too 

close together can omit potentially 

desirable solutions 

• User-defined parameters specify trade-

off and risk preferences described 

• When treated as a utility function, ri 

controls whether the desirability 

function describes risk avers, neutral, or 

seeking behavior depending on its 

relationship with the number of 

responses 

• When an exponential utility function is 

assessed over desirability, ri  controls 

whether the desirability function 

describes increasing or decreasing risk 

aversion depending on its relationship 

with the number of responses  

Deterministic tradeoff :  

Desirability treated as value function 

Risk preference:  

Desirability treated as utility function 

Risk preference:    

Exponential utility assessed over desirability 

• Point A is the point of maximum value 

although this value varies greatly with small 

changes in the responses.  This solution 

would most likely be preferred by a risk 

seeking decision maker. 

• Point B is exhibits less peak value and less 

variance than Point A.  This solution would 

most likely be preferred by a risk averse 

decision maker. 

• Properly modeling the decision maker’s risk 

preference can produce the correct multiple 

response robust solution. 
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Figure 17. Quad Chart
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